Unit #3 Intro to Vectors Coursepack

Introduction to Vectors

Scalar and Vector Quantities:

Scalar

• a quantity with magnitude only.

Examples:

• _____ • _____ • _____ • ____ • ____

Vector

• a mathematical quantity that is expressed by a magnitude AND direction

Examples:

• _____ • ____ • _____ • ____

Example 1: the following situations need to be described using an appropriate measure. Classify the measure as a scalar or a vector.

(a) the cost of a dance ticket _____

(b) the path from your desk to the classroom door

(c) the air speed of a jet as it heads north _____

REPRESENTATION OF VECTORS:

1. GEOMETRIC VECTORS \vec{a} \vec{b} \vec{c} \vec{d} A vector represented by a directed line segment drawn so that its length represents its magnitude.

2. ALGEBRAIC VECTORS

A vector that is written in rectangular form.

RECTANGULAR FORM: is of the form (a, b) or $\begin{pmatrix} a \\ b \end{pmatrix}$ where a represents the x-value and b

represents the y-value of the terminal point of the vector. Its initial point is the origin (0, 0). They are also called **algebraic vectors** and IB uses them in the column vector form.ie. (3, 4)

becomes $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

Notation:

$\overrightarrow{AB}, \overrightarrow{v}, v$ (boldface)

Vector \overrightarrow{AB} has an initial point (tip) at A and a terminal point (tail) at B.

Magnitude of a Vector

 $|\overrightarrow{AB}|$ represents the MAGNITUDE of \overrightarrow{AB} . | **v** | represents the MAGNITUDE of **v**.

> If the magnitude of a vector is zero, we call it the zero vector and denote it $\vec{0}$. This is a useful vector despite that its direction is undefined.

Equality of Vectors

Two vectors are equal if they have the same magnitude and the same direction. Ex. $\vec{c} = \vec{d}$, $|\vec{c}| = |\vec{d}|$

Opposite Vectors (additive inverse) The opposite of a vector would have the same magnitude but opposite direction. Ex. $\vec{a} = -\vec{d}$, $|\vec{a}| = |\vec{d}|$

$\overrightarrow{AB} = -\overrightarrow{BA}$	\therefore directions are opposite
$\left \overrightarrow{AB}\right = \left \overrightarrow{BA}\right $	∴ magnitudes are still equal

Example 2: *ABCDEF* is a regular hexagon. Give examples of vectors formed between pairs of vertices of hexagon *ABCDEF*:

a. equal

b. parallel but with different magnitudes

c. equal in magnitude but opposite in direction

d. equal in magnitude but not parallel

e. different in both magnitude and direction

Note: vector starting from the origin O to another point C is called position vector of C (i.e., fixed with respect to the origin). $\overrightarrow{OC} = \overrightarrow{c}$ or $\overrightarrow{OC} = \begin{pmatrix} a \\ b \end{pmatrix}$ 'column vector'

Cartesian Co-ordinate System: \vec{u} can be represented as an ordered pair (a, b) where its magnitude (modulus) is $|\vec{u}| = \sqrt{a^2 + b^2}$ and direction $\theta = \tan^{-1} {a \choose b}$ with θ measured counter-clockwise from the positive *x*-axis to the line of the vector. The ordered pair (a, b) is referred to as an **algebraic vector.** The values of *a* and *b* are the *x*- and *y*-components of the vector.

Collinear Vectors

- \circ vectors that lie on the same line when they are in standard position.
- $\circ \;\;$ they will be parallel to each other.
- \circ they either have the same direction or opposite direction.
- one will always be a scalar multiple of the other. i.e. $\vec{u} = k\vec{v}, k \in R, k \neq 0$

Example 3. Given that $|\vec{u}| = 5$ find the magnitude of each of the following vectors: a. $2\vec{u}$ b. $-4\vec{u}$ c. $\frac{1}{5}\vec{u}$

Example 4. Determine the value of k so that the following pairs of vectors are collinear.

a.
$$\binom{5}{-7} = k \binom{-10}{14}$$

b. $\vec{v} = \left(1, \frac{k}{2} - 6\right)$ and $\vec{u} = \left(-4, 1 + \frac{k}{6}\right)$

To create a unit vector in the direction of a non-zero \vec{u} , multiply \vec{u} by the scalar equal to the reciprocal of the magnitude of \vec{u} .

Example 5: If $|\vec{a}| = 12$, state a unit vector in the opposite direction of \vec{a} .

Standard Unit Vectors: The special unit vectors which point in the direction of the positive x-axis and positive y-axis are given the names \hat{i} and \hat{j} respectively, where $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$. \hat{i} and \hat{j} are the **standard basis vectors** for $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ **f** \mathcal{Y}

We may express any vector in the xy-plane as a sum of scalar multiples of the vectors and.

 $\vec{u} = \overrightarrow{OP} = (a, b) \quad \text{or} \quad \vec{u} = a\hat{i} + b\hat{j} \quad \text{or} \quad \vec{u} = \begin{pmatrix} a \\ b \end{pmatrix} , \qquad |\vec{u}| = \sqrt{a^2 + b^2}$ Example 6: $\overrightarrow{OP} = (-2, 3) = -2\hat{i} + 3\hat{j}$ $|\overrightarrow{OP}| = \sqrt{(-2)^2 + (3)^2}$ $= \sqrt{13}$ $\tan(\theta) = \frac{3}{-2} \Rightarrow \alpha = \tan^{-1} \left(\frac{3}{2}\right) \approx 56.3^0$ $\theta \approx 180^0 - 56.3^0 \approx 123.7^0$

Example 7: Find a vector of magnitude $\sqrt{6}$ in the direction of $\vec{v} = 7\hat{i} + 5\hat{j}$.

Vectors in 3 Dimensions

Previously, we had considered geometric and algebraic vectors in the 2-dimensional (Cartesian) plane. This model extends naturally to 3 dimensions.

Consider the 2-D (xy) Cartesian plane comprised of the x and y-axes.

If we add a third axis (*z*-axis) to our existing *xy*-plane such that all 3 axes are mutually perpendicular to one another, we create a coordinate system which models 3-dimensional space.

To plot the 3-dimensional point with coordinates (a,b,c), move a units from the origin in the x-direction, b units in the y-direction, and c units in the z-direction.

Standard Unit Vectors in R3: $\hat{i} = (1,0,0), \hat{j} = (0,1,0), \text{and } \hat{k} = (0,0,1)$ are the special unit vectors pointing in the direction of the positive x-, y-, and z-axes, respectively.

Example 8: Given the coordinates of points P(2,4,5) and Q(-4,3,-2), draw the vectors \overrightarrow{OP} and \overrightarrow{OQ} using a rectangular prism.

Example 9: Express the position vector of each of the points shown in the diagram as an ordered pair, column vector, and in basis vector notation.

Angle between 2 vectors:

The angle between two vectors is the angle $\leq 180^{\circ}$ formed when the vectors are placed **tail to tail**, that is, starting at the same point.

Example 10: *MNOP* is a rectangle with side lengths 3 and 5.

Q is the midpoint of *MP*.

Find the angle between the following vectors:

a) $\overrightarrow{\text{NP}}$ and $\overrightarrow{\text{NO}}$

b) $\overrightarrow{\text{NM}}$ and $\overrightarrow{\text{NQ}}$

c) \overrightarrow{NQ} and \overrightarrow{QP}

Practice

- 1. In the diagram at the right, \triangle AF B and \triangle BEC are equilateral, and ACDG is a rectangle.
 - (a) Write down two other vectors **equal** to \overrightarrow{AB} .
 - (b) Write down three vectors which are **opposite** to \overrightarrow{FE}
 - (c) What vector is the **opposite** of \overrightarrow{DC} ?
 - (d) Write down 3 vectors which have the same magnitude as \overrightarrow{BC} , but different direction.
 - (e) What vector is equal to $2 \overrightarrow{FE}$?
 - (f) What vector is equal to $\frac{1}{2}\overrightarrow{FE}$?

- 2. Using the diagram from #1, find the angles between the following vectors:
 - (a) \overrightarrow{AB} and \overrightarrow{AF}
 - (b) \overrightarrow{AF} and \overrightarrow{AG}
 - (c) \overrightarrow{DC} and \overrightarrow{AB}
 - (d) \overrightarrow{BC} and \overrightarrow{CE}
 - (e) \overrightarrow{EC} and \overrightarrow{AG}
 - (f) \overrightarrow{FD} and \overrightarrow{BA}
- 3. Sketch a vector to represent each of the following quantities, using the specified scale:
 - (a) a velocity of 30 m/s [south], where 1 cm = 10 m/s.
 - (b) a force of 20 Newtons, straight down, where 1 cm = 10 N.
 - (c) a displacement of 25 metres to the right, where 1 cm = 10 m.
 - (d) an airplane taking off a runway at an angle of $30\circ$ at a speed of 40 km/h, where 1 cm = 10 km/h.
- 4. Using the grid at the right, choose a vector which equals:
 - (a) -ā
 - (b) 3ā
 - (c) -2**b**
 - (d) a unit vector parallel to \vec{a}

5. Given the vector \vec{u} such that $|\vec{u}| = 8$ units, find the following:

(a) |3 ū |

6. Determine a unit vector parallel to each of the following vectors:

- (a) \vec{a} , given that $|\vec{a}| = 12$ units
- (b) \vec{w} , given that $|\vec{w}| = 10$ units
- (c) ū (non-zero)

7. A boat leaves harbour at 2:00 and travels due south at 50 km/h until 3: 30, when it turns east and travels at the same speed for another hour.

- (a) Write down the displacement vectors for each part of the journey.
- (b) What is the total distance covered?
- (c) What is the displacement vector between the starting point and ending point?

8. Two planes leave an airport at the same time. Plane A travels northwest at 120 km/h, while plane B travels due east at 150 km/h. After one hour, they both land. If plane A must then travel to plane B's landing point, in what direction should it travel, and how long will it take if it travels at 120 km/h?

9. For each point Q given, write the position vector \overrightarrow{OQ} in terms of \hat{i} and \hat{j} .

a. Q (3, -4)

b. Q (-5, -1)

10. For each point Q in question 1, find the magnitude of the position vector \overrightarrow{OQ} and its direction relative to the positive x-axis.

11. For each point R given, find the magnitude of the position vector \overrightarrow{OR} .

- a. R (4, −3, 12)
- b. R (2, -1, 3)

12. Write the position vectors of the point A shown, in the form $a\hat{i} + b\hat{j} + c\hat{k}$.

a.

13. Draw a sketch to show the point D (4, 2, -3) and draw the position vector \overrightarrow{OD} . 14. Determine the direction angles for each of the following vectors.

a.
$$\vec{v} = 2\hat{i} - \hat{j} + 3\hat{k}$$

b. $\overrightarrow{OA} = (-1, 4, -5)$
c. $\vec{u} = 5\hat{i} - 12\hat{k}$
d. $\overrightarrow{OB} = (0, 3, -4)$
15. Find a unit vector parallel to each of the given vectors.
a. $\vec{v} = (2, -5)$

a.
$$\vec{v} = (2, -5)$$

b. $\vec{OZ} = \hat{i} - 2\hat{j} + 4\hat{k}$
c. $\vec{w} = (-5, 12)$
d. $\vec{OP} = 3\hat{i} + 3\hat{j} - \hat{k}$

Answers

8. $[E\ 20^\circ\ S]$ for 2 hours and 5 minutes

Sample Questions

1. If $\vec{v} = (-2, 7)$ then find the magnitude of \vec{v} and the angle it makes with the x-axis.

2. If $\vec{v} = (-3, 2, 5)$ then what is the vector going in the opposite direction to \vec{v} that has a magnitude of 12?

3. If a wind, \vec{v} , is moving 15 km/h in the direction of *S*60°*E* then determine \vec{v} in component form. Hint: Make a diagram with a right angled triangle *w* as the hypotenuse and use trig to solve for the length on the x-and y-axis to find the x- and y- components of \vec{v}

Warm-up: Introduction to Vectors

1. Name all equal vectors in the diagram.

D

Е

2. ABCD is a rectangle with sides measuring 8 units and 4 units. E is the midpoint of BC. Find the angle between the following vectors:

3. Draw the position vector of the point P (-2,-5). Express it in ordered pair notation, basis vector notation and column notation. Determine its magnitude and direction.

Vector Laws:

Triangular Law of Vector Addition: For vectors \vec{u} and \vec{v} , the sum (or resultant) of \vec{u} and \vec{v} is a vector from the tail of \vec{u} to the tip of \vec{v} , when the tail of \vec{v} is placed at the tip of \vec{u} . Notation: $\vec{u} + \vec{v}$ \vec{v} \vec{v}

Commutative Law of Addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

Note: sum of the vectors is the **diagonal** of the parallelogram (**Parallelogram Law of Vector Addition**)

Recap

The triangle law was useful when arranging vectors tip to tail.

The **parallelogram law** was useful when arranging vectors tail to tail.

Vector Subtraction (adding the opposite): For vectors \vec{u} and \vec{v} , $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

Vector Operations

2-dimensions

3-dimensions

- $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2)$ $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$ Vector addition
- Vector subtraction
- $\vec{u} \vec{v} = (u_1 v_1, u_2 v_2) \qquad \vec{u} \vec{v} = (u_1 v_1, u_2 v_2, u_3 v_3)$ $\vec{k} = (ku_1, ku_2) \qquad \vec{k} = (ku_1, ku_2, ku_3)$ Scalar multiplication:

Components of a vector between two points:

The points $A(x_1, y_1)$ and $B(x_2, y_2)$ form the vector \overrightarrow{AB} . Using "position vectors", determine \overrightarrow{AB} and $|\overrightarrow{AB}|$. [Hint: To do this, use the triangle law of addition.]

Example 2 : P(4, 5), Q(-7, 10) and R(8, -3) are three points in R².

Determine \overrightarrow{QP} and $\left|\overrightarrow{QP}\right|$. a)

Determine $\left| \overrightarrow{PQ} + \overrightarrow{QR} \right|$. b)

Example 3: The diagram shows a rectangular prism. Determine a single vector (with tip and tail on the rectangular prism) that is equivalent to each sum or difference. С

- $-\overrightarrow{AE} + \overrightarrow{DA} =$ a)
- $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CG} =$ b)
- $\overrightarrow{FG} \overrightarrow{DC} \overrightarrow{AE} + \overrightarrow{AF} =$ c)

Example 4: Given the vectors $\vec{u} = (2,4,-1)$, $\vec{v} = 5\hat{\imath} + 4\hat{k}$ and $\vec{w} = (-1,3,5)$, determine the following:

a)
$$2\vec{u} \cdot \vec{w}$$
 b) $\vec{u} \cdot \frac{\vec{v}}{2}$ c) $|\vec{u} + \vec{v} \cdot \vec{w}|$

Example 5: A surveyor is standing at the top of a hill. Call this point the origin O. A lighthouse, L, is visible 4 km to the west and 3 km to the north. A town, T, is visible 5 km to the south and 2 km to the east. Using a vector basis in which \hat{i} is a 1 km vector running east and \hat{j} is 1 km vector running north, the position vectors of the lighthouse, \overrightarrow{OL} and the town \overrightarrow{OT} . Hence, find the vector \overrightarrow{LT} and the position of the town relative to the lighthouse.

Example 6: Determine the value of $|\vec{a} + \vec{b}|$ if $|\vec{3a}| = 24$ cm, $|\vec{2b}| = 10$ cm and $|\vec{3a} - 2\vec{b}| = 20$ cm.

Example 7: Given that $\vec{u} = x\vec{a} + 2y\vec{b}$ $\vec{v} = -2y\vec{a} + 3y\vec{b}$ $\vec{w} = 4\vec{a} - 2\vec{b}$

where \vec{a} and \vec{b} are not collinear, find the values of x and y for which $2\vec{u} \cdot \vec{v} = \vec{w}$.

Warm-up:

1. For vectors \vec{u} and \vec{v} shown below, draw a diagram of

a) $2\vec{u}+3\vec{v}$ b) $2\vec{u}-3\vec{v}$

2. Name a single vector equal to each combination of vectors.

(a)	$\overrightarrow{AB} + \overrightarrow{BC}$

- (b) $\overrightarrow{AB} + \overrightarrow{BD}$
- (c) $\overrightarrow{CD} + \overrightarrow{DA}$
- (d) $\overrightarrow{BC} \overrightarrow{DC}$
- (e) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$
- (f) $\overrightarrow{DC} \overrightarrow{BC} + \overrightarrow{BD}$
- (g) $\overrightarrow{AB} + \overrightarrow{BP} \overrightarrow{CP} + \overrightarrow{CB}$

3. If $\vec{u} = a\hat{i} + 5\hat{j} - 3\hat{k}$ and $\vec{v} = (b,-15,c)$ are collinear vectors, find (a) c

(b) a relationship between a and b.

Position Vectors

A position vector is a vector with the additional property that it is fixed at its tail to the origin O. This is not a free vector, since O is a fixed point $\overrightarrow{OP} = \overrightarrow{p}$.

Example 1: In $\triangle AOB$, $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$. Let M be the midpoint of \overrightarrow{AB} . Find the vector \overrightarrow{OM} in terms of \vec{a} and \vec{b} .

Example 2: OABC is a parallelogram with $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$. The point P lies on AB extended such that AB : BP = 2 : 1, and the point Q lies on CB such that CQ : QB = 1 : 3.

a) Express each Of these vectors terms of \vec{a} and \vec{b} .

i) \overrightarrow{AB} *ii*) \overrightarrow{AP} *ii*) \overrightarrow{OP} *iv*) \overrightarrow{OQ} b) Hence, show that $\overrightarrow{QP} = \frac{1}{4}\vec{a} + \frac{1}{2}\vec{b}$ Collinear points: points that lie on the same straight line

Example 3: The position vectors of the points, A, B and C are $2\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} + 11\hat{j} - 7\hat{k}$, respectively, Show that A, B and C are collinear.

Example 4: The position vectors of a triangle ABC are $\overrightarrow{OA} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$, and $\overrightarrow{OC} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$.

- a) Find \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} and show that $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}$.
- b) Find $|\overrightarrow{OA}|, |\overrightarrow{OB}|$ and $|\overrightarrow{AB} + 2\overrightarrow{BC}|$

Practice

- 1. Relative to a fixed origin O, the points A, B, and C have position vectors (-2, 7, 4), (-4,1,8) and (6, -5, 0) respectively.
 - (a) Find the position vector of the midpoint of AB.
 - (b) Find the position vector of the point D on AC such that *AD* : *DC*= 3: 1. Hint: Do not attempt to do this problem with distances. How would you split a line into 4 equal segments using midpoints?
- 2. Relative to a fixed origin 0, the point A, B, and C have position vectors (6, -2, -4), (12, -7, -4), and (6, 1, -8) respectively.
 (a) Find the position vector of the point M, the midpoint of BC.

(a) Find the position vector of the point M, the midpoint of B

(b) Show that O, A, and M are collinear points.

- 3. Given that $\vec{p} = (1, -2, 4)$, $\vec{q} = (-1, 2, 2)$, and $\vec{r} = (2, -4, -7)$. Find the value of *t* such that $\vec{p} + t\vec{q}$ is parallel to \vec{r} .
- 4. The diagram contains two squares. Express each difference as a single vector
 - a) $\overrightarrow{SQ} \overrightarrow{ST}$
 - b) $\overrightarrow{QT} \overrightarrow{QP}$
 - c) $\overrightarrow{PR} \overrightarrow{QS}$
 - d) $\overrightarrow{PT} \overrightarrow{TS}$

- 5. The diagram shows a cube, where $\overrightarrow{AB} = \overrightarrow{u}, \overrightarrow{AD} = \overrightarrow{v}$ and $\overrightarrow{AD} = \overrightarrow{v}$. Determine a single vector equivalent to each of the following.
 - a) $\vec{u} \cdot \vec{v} + \vec{w}$

b) $\vec{u} \cdot \vec{v} \cdot \vec{w}$

6. The diagram shows a regular hexagon. Prove that: $\overrightarrow{AB} - \overrightarrow{BC} + \overrightarrow{CD} - \overrightarrow{DE} + \overrightarrow{EF} - \overrightarrow{FA} = \overrightarrow{O}$

<u>3-5 Warm Up</u>

- 1. Determine the values of r and s given that $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ r \end{pmatrix}$ is parallel to $\vec{b} = \begin{pmatrix} s \\ 2 \\ -3 \end{pmatrix}$.
- 2. Quadrilateral ORST has position vectors \vec{r} , \vec{s} and \vec{t} . Point A is the midpoint of RS and point B divides ST such that SB:BT=2:5. Express each of these vectors in terms of \vec{r} , \vec{s} and \vec{t} .
 - a) \overrightarrow{RS} b) \overrightarrow{ST} c) \overrightarrow{OB} d) \overrightarrow{AB}

Dot Product of 2 Vectors - aka Scalar (Inner) Product

Dot Product :

- defined as: (horizontal displacement of an object)
- dot product involves two scalars
- ➢ result is a scalar ie) positive/negative/zero

Note: Vectors need to be tail to tail

angle value	$\cos(\theta)$ value	$\vec{u} \cdot \vec{v}$
$0^{\circ} \le \theta \le 90^{\circ}$		
$\theta = 90^{\circ}$		
$90^{\circ} \le \theta \le 180^{\circ}$		

Example 1: Given vectors \vec{u} and \vec{v} , where $|\vec{u}|=10$ and $|\vec{v}|=13$ and the angle between them is 150°, calculate $\vec{u} \cdot \vec{v}$.

Dot Product Properties

- 1) Commutative:
- 2) **Distributive** over vector addition:

3) Associative over scalar multiplication:

 $u \bullet v = v \bullet u$ $\vec{u} \bullet (\vec{v} + \vec{w}) = \vec{u} \bullet \vec{v} + \vec{u} \bullet \vec{w}$ $m(\vec{u} \bullet \vec{v}) = (m\vec{u}) \bullet \vec{v} = \vec{u} \bullet (m\vec{v})$ $(m\vec{u}) \bullet (n\vec{v}) = mn(\vec{u} \bullet \vec{v})$

Example 2: Evaluate $\hat{j} \cdot \hat{j}$ and $\hat{i} \cdot \hat{j}$.

Example 3: What is the dot product of a vector \vec{u} with itself? ($\theta = o^{\circ}$).

Example 4: If vectors $3\vec{p} + \vec{q}$ and $\vec{p} - 3\vec{q}$ are perpendicular and $|\vec{p}| = 2|\vec{q}|$, determine the angle between the non-zero vectors \vec{p}, \vec{q} .

How to Evaluate Dot Product of Algebraic Vectors 2-dimensions 3-dimensions

 $\vec{u} = (u_1, u_2), \vec{v} = (v_1, v_2) \qquad \vec{u} = (u_1, u_2, u_3), \vec{v} = (v_1, v_2, u_3)$ $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 \qquad \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ Example 5. Given that vectors $\vec{u} = \begin{pmatrix} k+2\\ 5 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} k+1\\ -6 \end{pmatrix}$ are perpendicular, solve for k.

Using dot product to find angle between two vectors

The formula $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\theta)$ can be rearranged to make solving for θ simpler.

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\left|\vec{u}\right| \left|\vec{v}\right|}$$

Example 6: A parallelogram is bounded by vectors $\vec{u} = (1,2)$ and $\vec{v} = (3,-2)$. Find the angle between the diagonals of the parallelogram

Example 7: The diagram shows a parallelogram ABCD. The coordinates of A, B, and D are A(1,2,3) ,B(6,4,4) and D(2,5,5).

(c) Find $\overrightarrow{AB} \cdot \overrightarrow{AD}$ and hence find angle A.

С

Practice

- 1. Given that $|\vec{a}| = 2$, $|\vec{b}| = 3$, and $\theta = 120^{\circ}$ expand and simplify $(3\vec{a} + 4\vec{b}) \cdot (5\vec{a} + 6\vec{b})$.
- 2. The points A(-1,1), B(2,0), and C(1,-3) are vertices of a triangle.
 - (a) Show that this triangle is a right triangle.
 - (b) Calculate the area of triangle ABC.
 - (c) Calculate the perimeter of triangle ABC.
 - (d) Calculate the coordinates of the fourth vertex D that completes the rectangle of which A, B, and C are the other three vertices
- 3. If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, prove that the non-zero vectors \vec{a} , \vec{b} are perpendicular. What could this look like?
- 4. Given the vectors $\vec{u} = [1,0,1]$, $\vec{v} = 2\hat{i} + m\hat{j} + 2\hat{k}$ find the value(s) of m if the angle between \vec{u} and \vec{v} is 45°.
- 5. Find the angle between the given vector and the axis.

a)
$$\begin{pmatrix} 7 \\ -3 \end{pmatrix}$$
 and negative x-axis b) $\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}$ and positive x-axis

6. ABCDEFGH is a regular octagon with sides of unit length. (Recall interior angles are 135°). Let $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{AH} = \overrightarrow{b}$. Prove that $\overrightarrow{BC} = \overrightarrow{b} + \sqrt{2} \overrightarrow{a}$.

MCV4UZ

1. The diagram shows a parallelepiped. Determine a single vector (with head and tail on the parallelepiped) that is equivalent to each sum or difference.

- 2. ABCDE is a pentagon such that $\overrightarrow{AB} = \overrightarrow{DC}$ and $\overrightarrow{AC} = 2\overrightarrow{ED}$ write each vector in terms of \overrightarrow{AB} and \overrightarrow{AC} .
- a) $\overrightarrow{EC} =$ b) $\overrightarrow{CB} =$ c) $\overrightarrow{AE} =$ $\overrightarrow{CB} =$ \overrightarrow{D} $\overrightarrow{CB} =$ \overrightarrow{D}
- 3. If \vec{a} and \vec{b} are unit vectors that make an angle of 60° with each other, calculate $|3\vec{a}-4\vec{b}|$.
- 4. If $\frac{2}{3}\vec{x} = \vec{a} + \frac{1}{3}\vec{b}$, $2\vec{y} = -3\vec{a} + \vec{b}$ express $2\vec{a} 5\vec{b}$ in terms of \vec{x}, \vec{y} .
- 5. Given that

$$\vec{u} = x\vec{a} + 2y\vec{b}$$
$$\vec{v} = -2y\vec{a} + 3y\vec{b}$$
$$\vec{w} = 4\vec{a} - 2\vec{b}$$

where \vec{a} and \vec{b} are not collinear, find the values of x and y for which $2\vec{u} - \vec{v} = \vec{w}$.

- 6. Using the regular hexagon ABCDEF shown, express each of the following vectors in terms of \vec{x} and \vec{y} .
 - a) $\overrightarrow{DA} =$
 - b) $\overrightarrow{DE} =$
 - c) $\overrightarrow{BF} =$

MCV4UZ

Mid-Review: Geometric Vector

- 7. Given $\vec{p} = [2, -3], \vec{q} = [-1, 4]$, evaluate $|\vec{3p} 2\vec{q}|$.
- 8. Given the point P(4,-3) where $\overrightarrow{PQ} = [7,-4]$ find a) coordinates of Q b) $|\overrightarrow{PQ}|$ c) a unit vector in the direction of \overrightarrow{QP}
- 9. If $\vec{u} = [1,4,-2]$, $\vec{v} = -2\hat{i} 3\hat{j}$ and $\vec{w} = [-1,-3,1]$, find: a) $|3\vec{v} + 3\hat{i} - 2k|$
 - b) a unit vector with the same direction as \vec{u} .
 - c) Find the angle between \vec{v} and \vec{w}
- 10. The points A(-1,2,-1) ,B(2,-1,3), and D(-3,1,-3) are three vertices of parallelogram ABCD. Find the coordinate of C.
- 11. Vectors [2, -a, 1] and [-2, 2, -a+1] are collinear. Find the value of a.
- 12. The vectors \vec{u} and \vec{v} have lengths 2 and 1 respectively. The vectors $\vec{u} + 5\vec{v}$ and $2\vec{u} 3\vec{v}$ are perpendicular. Determine the angle between \vec{u} and \vec{v} .

<u>3-6 Warm Up</u>

- 1. Find the dot (scalar) product of \vec{u} and \vec{v} for the following: a) $|\vec{u}| = 5$, $|\vec{v}| = 8$, $\theta = 13^{\circ}$ b) $\vec{u} = (5, 6)$, $\vec{v} = (-2, 3)$
- 2. Find the angle between the vectors:

a)
$$\vec{u} = (-6, 1)$$
 and $\vec{v} = (-5, 3)$

- b) $3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ and $4\hat{\imath} 5\hat{\jmath} 3\hat{k}$
- 3. Find the value of c so that the vectors $\hat{i} + \hat{j} + \hat{k}$ and $c^2\hat{i} 2c\hat{j} + \hat{k}$ are perpendicular.

Equations of Lines in R²

In R² vectors can be used to define a line .Two new forms of the equation of the line are the **Vector Equation of a Line** and **Parametric Form of the Equation of a Line**. We start by defining the former.

Vectors can be used to locate points on a line as shown in the diagram at right. If A is a given point on the line and \vec{m} is a vector parallel to the line, $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{tm}$ can be used to locate any point P(x, y) on the line.

This equation is called the **Vector Equation** of the line.

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{tm}$$

- \overrightarrow{OA} is called a **Position Vector**
- \vec{m} is called a **Direction Vector**
- t is called a **Parameter** (any real number)

Vector Equation of Lines in R²

Another way to write this equation using variables is $\vec{r} = \vec{r}_0 + t\vec{m}$. By substituting $\vec{r} = (x, y)$, $\vec{r}_0 = (x_0, y_0)$ and $\vec{m} = (m_1, m_2)$ into this equation we get another form of the vector equation.

The Vector Equation of a Line in R²
$$\vec{r} = \vec{r}_0 + t\vec{m}$$
OR $(x, y) = (x_0, y_0) + t(m_1, m_2)$ where $t \in \mathbb{R}$ is a parameter $\vec{r} = (x, y)$ is a position vector to any unknown point on the line $\vec{r}_0 = (x_0, y_0)$ is a position vector to any known point on the line $\vec{m} = (m_1, m_2)$ is a direction vector parallel to the line

Example 1:

a) Write a vector equation of a line passing through the points A(1, 4) and B(3, 1).

b) Determine two more points on the line.

c) Determine if the point (2, 3) is on this line.

NOTE: Vector equations are NOT unique!

The vector equation can be separated into two parts, one for each variable. These are called **parametric equations** of a line.

The Parametric form of the Equation of a Line in R² For a line with equation $(x, y) = (x_0, y_0) + t(m_1, m_2)$, the parametric equations are $x = x_0 + tm_1$ $y = y_0 + tm_2$ where $t \in \mathbb{R}$ (the parameter)

Example 2: Rewrite your vector equation from Example 1(a) in parametric form.

NOTE: Again, like vector equations, parametric equations are not unique as we can use the coordinates of any point on the line and any scalar multiple of the direction vector.

Example 3: A line L_1 is defined by x = 3 + t and y = -5 + 2t.

- a) Find the coordinates of two points on this line.
- b) Find the y-intercept of the line.

c) Write the vector equation for L_1 .

d) Determine if L_1 is parallel to L_2 : x = 1 + 2t, y = -9 + 4t.

Symmetric Equation of a line.

The Symmetric form of the Equation of a Line in R²

For a line with equation $(x, y) = (x_0, y_0) + t(m_1, m_2)$, the symmetric equation is

$$\frac{x - x_o}{m_1} = \frac{y - y_o}{m_2} , m_1, m_2 \neq 0$$

What happens if m1 or m2 is zero?

Let suppose $m_2=0$. In this case t will not exist in the parametric equation for y and so we will only solve the parametric equations for x for t. We then set those equal and acknowledge the parametric equation for y as follows,

$$\frac{x-x_0}{m_1}, y=y_0$$

Example 4: Write all three forms of the equation of the line that passes through the points

A (2,-1) and B(4,-1).

Example 5: Consider the line with Cartesian equation 4x + 5y + 20 = 0.

- a) Determine its slope. How does the slope compare to the Cartesian equation?
- b) Determine a vector equation of this line. How does the direction vector relate to the slope?
- c) Determine a position vector that is perpendicular to the line (e.g. a normal vector). How does the normal vector compare to the Cartesian equation?

NOTE: For a line with equation Ax + By + C = o,

- the slope of the line is _____ and a direction vector \vec{m} =_____.
- the normal vector is $\vec{n} =$ _____.

You Try!

Determine equivalent vector, parametric, symmetric and Cartesian equations of the line

$$y = \frac{3}{4}x + 2.$$

Equations of Lines in R³

As in R², a direction vector and a position vector to a known point on a line are all that are needed to define a line in R³.

The Vector Equation of a Line in R³ $\vec{r} = \vec{r_0} + t\vec{m}$ OR $(x, y, z) = (x_0, y_0, z_0) + t(m_1, m_2, m_3)$ where • $t \in \mathbf{R}$ is a parameter • $\vec{r} = (x, y, z)$ is a position vector to any unknown point on the line

- $\vec{r}_0 = (x_0, y_0, z_0)$ is a position vector to any known point on the line
- $\vec{m} = (m_1, m_2, m_3)$ a direction vector parallel to the line

The Parametric form of the Equation of a Line in R³

For a line with equation $(x, y, z) = (x_0, y_0, z_0) + t(m_1, m_2, m_3)$, the parametric equations are

____ where $t \in \mathbb{R}$

Overall, the various new forms of lines in **R**² can be extended to lines in **R**³.

Comparison of equations of a line in R² and R³

	Equation of a line in R ²	Equation of a line in R ³
Scalar	Ax + By + C = 0	
Vector	$(x, y) = (x_0, y_0) + t(m_1, m_2)$	
Parametric	$x = x_{o} + tm_{1}$ $y = y_{o} + tm_{2}, t \in \mathbb{R}$	
Symmetric	$\frac{\mathbf{x} - \mathbf{x}_{0}}{\mathbf{m}_{1}} = \frac{\mathbf{y} - \mathbf{y}_{0}}{\mathbf{m}_{2}}$ where $\mathbf{m}_{1}, \mathbf{m}_{2} \neq 0$	

Example 6: A line passes through points A(2, -2, 5) and B(0, 6, -5).

- a) Write a vector equation for the line.
- b) Write parametric equations for the line.
- c) Write symmetric equations for the line.
- d) Determine if the point C(0, -10, 9) lies on the line.

Thinking Question: Why can't a normal vector and a point define a line in R³?

Practice

- 1. Determine if the following points are on the line $\ell:[-4,3]+t[3,2]$.
- a) (-1,5) b) (-16,-5)
- 2. For the line defined by $l: \begin{cases} x = -3 t \\ y = 2 + 2t \end{cases}$, state the coordinates of
- a) the y-intercept
- b) the x-intercept
- c) the point where x=12
- d) the point where y=38
- 3. Rewrite each of the equations below into the specified form.
- a) $\ell:[7,2]+t[3,-2]$ into parametric form b) $\ell:\begin{cases} x=32-3t\\ y=26+4t \end{cases}$ into vector form
- 4. Find the equation of the line and write in the specified form:
- a) the line parallel to $\vec{m} = [2,3]$ that hits the point (1,4), in parametric form.
- b) the line that passes through the points (2,4) and (5,13), in vector form.
- c) the vertical line through (4, -2), in parametric form.
- d) the line with the same x-intercept as $l_1:[3,6]+t[1,-2]$, and the same y-intercept as $l_2:[8,4]+s[-1,3]$, in vector form.
- 5. Given the line $\ell:[7,3,1]+t[-1,3,1]$, determine if the following lines are parallel, perpendicular, or coincident to it.
- a) $\ell_2:[2,-3,4]+t[5,1,2]$
- b) $l_3: x=1+t$, y=21-3t, z=7-t
- c) $\ell_4:[5,3,2]+t[-2,6,2]$
- d) $\ell_5:[3,7,-2]+t[4,6,1]$
- 6. If the points (4,2,7),(6,19,-4), and (80,b,c) lie on the same straight line, find the values of b and c.
- 7. Determine the angle between each pair of lines:
- a) $\ell_1:[4,5,-2] + t[3,-1,-1]$ $\ell_2:[4,5,-2) + s[-2,-3,2]$
- b) $\ell_1: \frac{x-5}{3} = \frac{y+2}{5} = z-2$ $\ell_2: \frac{x-5}{8} = y+2 = \frac{2-z}{3}$
- 8. Find, in parametric form, the equation of a line perpendicular to both $l_1:[3,7,-2]+t[3,-1,-1]$ and $l_2:[8,-3,-3]+t[-2,-3,2]$ that passes through (5,0,0).
- 9. Find, if possible, the value(s) of k such that the lines ℓ₁:[9,3,2]+t[3,k,−15] and ℓ₂:[−5,4,−2]+t[10,12,50] are:
- a) parallel b) perpendicular
- 10. Point P₁ lies on the line $\ell_1:[4,4,-3]+t[2,1,-1],t\in\mathbb{R}$, and point P₂ lies on the line $\ell_2:[-2,-7,2]+s[3,2,-3]$. If the vector $\overrightarrow{P_1P_2}$ is perpendicular to both ℓ_1 and ℓ_2 , determine the coordinates of P₁ and P₂.

3-7 Warm Up

- 1. Determine whether $l_1: \frac{x=2-t}{y=5t}$ and $l_2: x-3 = \frac{1-y}{5}$ are coincident.
- 2. Develop vector, parametric, symmetric and Cartesian equations of the line through the point (3, -5) and is perpendicular to the line: $\begin{aligned} x &= 3t 5\\ y &= 2 + t \end{aligned}$
- 3. Determine the Cartesian equation of the line passing through the point P(5, 4) and perpendicular to $\vec{u} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}$.

The Intersection of Two Lines in $R^{\rm 2}$ and $R^{\rm 3}$ In $R^{\rm 2}$

Lines may	Diagram	Number of solutions
be parallel		
coincide (be coincident)		
intersect		

In *R*³ (the **Notation** is the same as for *R*²)

Lines may	Conditions	Number of solutions
be parallel	x ^z x ^k	
coincide (be coincident)	x x	
intersect (and are therefore coplanar)	x x x	
skew (do not intersect and are not parallel)	x x x	

Method for Determining Line Situation

Examples for R²:

Are each of the following pairs of lines parallel, coincident or intersecting? If the lines intersect, find the point of intersection.

1)
$$L_1: 2x + 3y - 30 = 0$$

 $L_2: x - 2y + 13 = 0$

2)
$$L_1:(x,y) = (18,-2) + t(3,-2)$$

 $L_2:(x,y) = (-5,4) + s(2,1)$

3)
$$L_1:(x,y) = (1,3) + t(4,2)$$

 $L_2:\frac{x-2}{2} = y-1$

Examples for R³:

Are each of the following pairs of lines parallel, coincident, intersecting or *skew* ? If the lines intersect, find the point of intersection.

4) $L_1:(x,y,z) = (-1,1,0) + t(3,4,-2)$ $L_2:(x,y,z) = (-1,0,-7) + s(2,3,1)$

5)
$$L_1:(x,y,z) = (2,1,0) + t(1,-1,1)$$

 $L_2:(x,y,z) = (3,0,-1) + s(2,3,-1)$

6)
$$L_1: x = 1 - 2s, y = s, z = -1 - s, s \in R$$

 $L_2: \frac{x+1}{-2} = \frac{1-y}{-1} = z - 2$

Practice

 $\ell_1: \vec{r} = [3, 0, -2] + t[3, 1, -3]$ 1. Find the value(s) of *a* and *b* that make the lines $\ell_2: \vec{r} = [15, 4, a] + s[5, b, -5]$

- a) Coincident
- b) Parallel and distinct
- c) Intersecting
- d) Skew
- 2. Determine the parametric equations of a line whose direction vector is perpendicular to the direction vectors of the two lines $\frac{x-4}{3} = \frac{y+1}{5} = \frac{z-4}{2}$ and $\frac{x}{6} = \frac{y-7}{10} = \frac{z+3}{5}$ and passes through the point (5,0,-2).
- 3. Find the vector equation of the line through the point (8,10,10) that meets the line $\frac{x+8}{-1} = \frac{y-11}{3} = \frac{z-1}{4}$ at 90° angles.
- 4. Lines ℓ_1 : $\vec{\mathbf{r}} = [2,1,3] + t[6,-4,-1]; t \in \mathbb{R}$ and ℓ_2 : $\begin{cases} x 1 = -s \\ y 6 = \mathbf{a}s \\ z 2 = \mathbf{b}s \end{cases}$ are intersecting at

point (-1,3,2). What are the possible values of **a** and **b**

- 5. Find all values of *k* for which the following lines **do not** intersect. x = -1 + 2r $I_1: \left\{ y = 3k + r \quad \text{and} \quad I_2: \vec{r} = \begin{bmatrix} 1, 0, -2 \end{bmatrix} + t \begin{bmatrix} -2, 3, 1 \end{bmatrix} \right\}$ z = 1 + 3r
- 6. Determine the point(s) of intersection between line $x 2 = t, y + 2 = 3t, 2 + z = 2t, t \in \mathbb{R}$ and sphere with equation $x^2 + y^2 + z^2 = 100$.
- 7. Determine if the following lines are parallel, skew or intersecting. In the case the lines are intersecting, find the point of intersection. $L_1: [x, y, z] = [-3, 1, 4] + t[1, -1, -4]$ and $L_2: [x, y, z] = [1, 4, 6] + s[6, 1, 7]$

8. Determine why the lines $\vec{r} = [1,3,4] + s[2,3,5]$ and $\vec{v} = [1,1,1] + t[2,2,-2]$ are not perpendicular.

<u>3-8 Warm Up</u>

1. Prove that the lines $l_1: (x - 1, y - 4, z) = s(-4, 2, 6), s \in \mathbb{R}$ and $l_2: (x, y, z) = (-3, 3, 0) + t(0, 1, 2), t \in \mathbb{R}$ lie in the same plane.

MCV 4UE Warm-Up: Lines in R² &R³ 1. Write each of the following lines in scalar, vector, parametric, and symmetric form.

Scalar (Cartesian)	Vector	Parametric	Symmetric
2x + 3y - 6 = 0			
			$\frac{x-2}{2} = \frac{4-2y}{-3}$
	r =[2,-3,1]+t[1,-1,4]		
		$\begin{cases} x = -2t \\ y = -1+3t \\ z = 3t+2 \end{cases}$	

2. Determine the **exact** value(s) of k that would make the following lines intersect at 60° angle.

$$L_1: \vec{r} = [17, -16] + t[1,k] \text{ and } L_2: \frac{x-25}{1} = \frac{y-3}{-1}$$

$$\cos(60^{\circ}) = \frac{\overrightarrow{\mathbf{m}}_1 \bullet \overrightarrow{\mathbf{m}}_2}{\left| \overrightarrow{\mathbf{m}}_1 \right| \left| \overrightarrow{\mathbf{m}}_2 \right|}$$

3. Determine parametric equations of a line that is parallel to $\vec{r}_1 = \left[3, \frac{5}{2}, -5\right] + t\left[-1, 1, 0\right]$ and passes

through the x-intercept of
$$\begin{cases} x = 2 + 3t \\ y = \frac{1}{2} + \frac{1}{4}t \\ z = 6 + 3t \end{cases}$$

Application to Constant Motion in Two-Dimensional Space

Consider an object moving with constant velocity, \vec{v} , modeled as a point particle moving along an arbitrary path in the *xy*-plane. We assume that we are able to detect the particle's position at any point and to measure the corresponding clock time. Two positions *A* and *B* in the particle's path are shown. Let the vectors that locate these positions be \vec{r}_0 and \vec{r} , respectively. The displacement, \vec{s} , can be expresses as $\vec{s} = \vec{r} - \vec{r}_0$.

Therefore, *displacement* = $\vec{s} = \overrightarrow{AB}$

$$= \vec{r} - \vec{r}_o$$

Since $\vec{s} = t\vec{v}$, where \vec{v} is the velocity

$$\vec{r} - \vec{r}_o = t\vec{v}$$
or
$$\vec{r} = \vec{r}_o + t\vec{v}$$

Suppose that $\vec{r}_o = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ km and the cyclist's velocity is $\begin{pmatrix} 10 \\ -2 \end{pmatrix}$ km/h. B is an arbitrary position on the cyclist's path, so $\overrightarrow{OB} = \vec{r}$ can be written as $\begin{pmatrix} x \\ y \end{pmatrix}$ so that $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 10 \\ -2 \end{pmatrix}$ for any value of

 $t \ge 0$. The position vector of the cyclist can be found at any time by replacing *t* with the appropriate numerical value.

Example 1: An object, P, moves in a straight line with constant velocity. Its position vector,

relative to an origin, O, is given by $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}, t \ge 0$, where *t* is measured in hours and displacement is measured in kilometers

(a) Find the coordinates of P (i) initially (ii) after 5 hours.

Another object, Q, also moves in a straight line with constant velocity so that its position vector at time, t, is given $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} + t \begin{pmatrix} 5 \\ -1 \end{pmatrix}, t \ge 0$

(b) Show that the paths of P and Q intersect, but P and Q do not collide.

Example 2. A cyclist is traveling at a speed of 26 km/h in a direction $\begin{pmatrix} 12 \\ -5 \end{pmatrix}$ relative to an origin, O

She starts at point A(-2, 10) and, after one hour she has reached point B

- (a) Write down a unit vector parallel to the cyclist's velocity and use it to find her velocity as a column vector
- (b) Find (i) \overrightarrow{OA} (ii) \overrightarrow{AB} (iii) \overrightarrow{OB}
- (c) Find the coordinates of B

After t hours, she is at point P.

(d) On Cartesian axes, show the cyclist's path and the points O, A B and an arbitrary point P.

(e) Find (i) \overrightarrow{AP} (ii) $\overrightarrow{OP} \bullet \overrightarrow{AP}$ in terms of t

(f) Hence, find the time, to the nearest minute, for the cyclist to be closest to O and the distance $|\overrightarrow{OP}|$ at this time.

Practice

- The position of two submarines S₁ and S₂ at time t hours are given by the formulas S₁: [x, y, z] = [2, 1, -4] + t [2, 1, 2] S₂: [x, y, z] = [1, 1, 1] + t [2, 0.5, -4]
 - (a) What is the speed of the first submarine?
 - (b) Determine if the paths of the two submarines will intersect.
 - (c) Determine if the two submarines will collide.
- 2. Position in km of a helicopter is given by $\mathbf{r} = \begin{pmatrix} 17 \\ -11 \end{pmatrix} + t \begin{pmatrix} -20 \\ 21 \end{pmatrix}$ where 't' is the number of

hours after 8:00 a.m. Sherwood Park is at $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Find:

- (a) distance from Sherwood Park at 10:00 a.m.
- (b) time when the plane is 123 km west and 133 km north of Sherwood Park
- 3. A particle is moving with a constant velocity along line L. Its initial position is A(6, -2, 10) and after one second it has moved to B(9, -6, 15).
 - (a) Find the velocity vector \overrightarrow{AB} and find the speed of the particle.
 - (b) Write down a possible vector equation of the line L.
- 4. The position of ship A is given by $\mathbf{a} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} + t \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ and ship B by $\mathbf{b} = \begin{pmatrix} -13 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ where

the distance is in kilometres and t is the number of hours after 9:00 A.M. The base is at the origin. Find:

- (a) the position of ship A at 1:00 p.m. relative to the base.
- (b) distance between the 2 ships at 1:00 p.m.
- (c) the time when they would collide.
- (d) the speed of ship A.

<u>Unit 2 – Algebraic Vectors Review</u>

1. The diagram on the right shows a regular octagon. Write a single vector that is equivalent to each vector expression

a.	$\overrightarrow{HA} + \overrightarrow{AB}$	$\overline{[HB]}$
b.	$\overrightarrow{GH} - \overrightarrow{GF}$	\overline{FH}
c.	$\overrightarrow{FE} + \overrightarrow{BA}$	$\left[\overrightarrow{0}\right]$
d.	$\overrightarrow{GA} - \overrightarrow{EH} + \overrightarrow{DG}$	$\left[\vec{0}\right]$

- 2. Given $\vec{u} = [-2, y]$ and \vec{u} makes a 120° with the x-axis. Determine the value of y and $|\vec{u}|$. $[y = 2\sqrt{3}, |\vec{u}| = 4]$
- 3. Using vectors show that the three points A(2, -3, 7), B(7, 12, -3), and C(-2, -15, 15) are collinear.
- 4. Determine the value of k so that $\vec{u} = [k, 3]$ and $\vec{v} = [k, 2k]$ are perpendicular. [k = -6]
- 5. Solve for x if $\vec{u} = [3x, 7], \vec{v} = [5x, x], and |\vec{u} + \vec{v}| = 10x.$ $\left[x = \frac{7}{5}\right]$
- 6. Given that $\vec{u} = 3\vec{x} \vec{y}$ and $\vec{v} = 2\vec{x} + 5\vec{y}$

a. Express $\vec{w} = \vec{u} + \vec{v} - 2\vec{x} + \vec{y}$ in terms of \vec{x} and \vec{y} .	$[\vec{w} = 3\vec{x} + 5\vec{y}]$
b. If $\vec{x} = [1, 3]$ and $\vec{y} = [-2, 5]$ then	
i. determine $ \vec{w} $.	$\left[\sqrt{1205}\right]$
ii. determine the angle \vec{w} makes with the x-axis.	[101.6°]

- 7. Given that $|\vec{a}| = 10$, $|\vec{b}| = 15$, and $|\vec{a} \vec{b}| = 11$
 - a. find the angle between \vec{a} and \vec{b} .[47.156°]b. calculate $|\vec{a} + \vec{b}|$.[23]
- 8. In a quadrilateral ABCD, T is the midpoint of the side AB. U is the midpoint of the side CD. L is the midpoint of the diagonal AC, and M is the midpoint of the diagonal BD. Let $\overrightarrow{AB} = \vec{a}$ and $\overrightarrow{BC} = \vec{b}$ and $\overrightarrow{CD} = \vec{c}$.
 - a. Show that $\overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{TU}$.
 - b. Show that $\overrightarrow{AD} + \overrightarrow{CB} = 2\overrightarrow{LM}$.
- 9. a. If $cos(\theta) = X$ and θ is obtuse, what do you know about the sign of X?
 - b. If the angle between \vec{u} and \vec{v} is obtuse, what do you know about the value of $\vec{u} \cdot \vec{v}$?
 - c. Determine the value(s) of k so that the angle between $\vec{x} = [11, 3, 2k]$ and $\vec{y} = [k, 4, k]$ is obtuse.

 $\left[-4 < k < -\frac{3}{2}\right]$

10. If $\vec{u} = [1, 4, -2], \vec{v} = -2\hat{\imath} - 3\hat{\jmath}, and \vec{w} = [-1, -3, 1]$ find

a. $|3\vec{v} + 3\hat{i} - 2\hat{k}|$.

- b. *û*.
- c. the angle between \vec{v} and \vec{w} .

[√ <u>94]</u>	
1 4	2]
$\left[\sqrt{21}, \sqrt{21}, \frac{1}{\sqrt{21}} \right]$	$\sqrt{21}$
[23.09°]	

- d. a vector with a magnitude of 7 in the opposite direction of \vec{w} .
- 11. The points A(-1, 2, -1), B(2, -1, 3) and D(-3, 1, -3) are three vertices of parallelogram ABCD. [C(0, -2, 1)]
 - a. Find the coordinate of C .
 - b. Verify that the vector $-10\hat{i} + 2\hat{j} + 9\hat{k}$ is perpendicular to \overrightarrow{AB} .
- 12. If the points A(1, -1, 4), B(1, 1, 2), and C(2, -1, -1) are the vertices of a triangle, determine \overrightarrow{BA} , \overrightarrow{BC} , and $\left[\frac{\sqrt{14}\times\sqrt{8}\sin(79.1^\circ)}{2}\right]$ $\angle ABC$. Use these to determine the area of $\triangle ABC$.
- $\left[-\frac{11}{2}\right]$ 13. If \vec{a} and \vec{b} are unit vectors, and $|\vec{a} + \vec{b}| = \sqrt{3}$ determine $(2\vec{a} - 5\vec{b}) \cdot (\vec{b} + 3\vec{a})$.
- 14. Determine the vector and parametric equation of a line which passes through the point A(-4, 0, 3) and is parallel to the x-axis.
- 15. Determine the symmetric equation of a line which passes through the points A(2, 3, -1) and B(5, -2, 9). $\frac{x-2}{2} = \frac{y-3}{-5} = \frac{z+1}{10}$
- 16. Determine the Cartesian/Scalar equation of a line which goes through the point (-3, 5) that is normal to the line $y = \frac{2}{3}x - 7$. [3x + 2y - 1 = 0]
- 17. Determine the vector equation of a line which goes through the point (3, 4) that is
 - a. parallel to the line $y = -\frac{4}{3}x + 1$. [l:[x, y] = (3, 4) + t[-3, 4]]
 - [l: [x, y] = (3, 4) + t[2, -1]]b. perpendicular to the line y = 2x + 5.
- 18. Write the parametric equation of the line that goes through the point (6, -2, 1) and is perpendicular to both

$$l_1: [x, y, z] = [1, 4, -2] + t[3, -1, 1]$$

$$l_2: [x, y, z] = [9, 5, -3] + k[1, -3, 7]$$

$$[x = 6 - t, y = -2 - 5t, z = 1 - 2t]$$

19. Which of these vector equations represent the same line?

$$l_1: [x, y, z] = [11, -2, 17] + t[3, -1, 4]$$

$$l_2: [x, y, z] = [-13, 6, -10] + k[-3, 1, -4]$$

$$l_3: [x, y, z] = [-7, 4, -7] + s[-6, 2, -8]$$

- 20. Given the lines $l_1: [x, y, z] = (3, -7, 5) + k[1, -2, 4]$ and $l_2: [x, y, z] = (-7, -8, 0) + m[3, 1, -1]$. Determine if the lines intersect. If the lines intersect state the intersection point and determine the acute angle between both lines. [skew lines]
- 21. Given lines $l_1: \frac{x-3}{1} = \frac{y+7}{-2} = \frac{5-z}{-4}$ and $l_2: \frac{x+7}{3} = \frac{y+8}{1} = \frac{-z+4}{1}$. Determine if the lines intersect. If the lines intersect state the intersection point and determine the acute angle between both lines.

 $[(2, -5, 1), 78.62^{\circ}]$

 $[l_1 and l_3]$

 $\left[\frac{7}{\sqrt{11}}[1,3,-1]\right]$

22. Does the line $l_1: [x, y, z] = [-4, 2, -2] + t[2, -1, 3]$

- a. Intersect the z-axis? If so, where?
- b. Intersect the y-axis? If so, where?

[0, 0, 4] [no intersection]

23. The position of two helicopters X and Y at time t seconds are given by the formula

 $H_1: [x, y, z] = (11, 3, -3) + t[1, -1, 4]$ $H_2: [x, y, z] = (1, -7, -2) + s[2, 1, 9]$

- a. What is the speed of the two helicopters if distances are measured in metres? $\left[3\sqrt{2} \text{ and } \sqrt{86}\right]$
- b. Show that the two helicopters will not collide. $\left[s = \frac{20}{3}, t = \frac{10}{3}x \text{ and } y \text{ coordinaes}\right]$
- c. Determine the distance between the helicopters when t = 10. $\left[\sqrt{2701} m\right]$
- 24. An Enemy Battleship is located at point B(65, -33) notices a stranded Aircraft Carrier located at point A(-5, 7). The Battleship fires a missile towards the Carrier with a velocity of $\vec{v} = [-3.5, 2]$ units/min. If a Friendly Destroyer located at D(30, 17) notices the missile on sonar 5 minutes after the missile was launched and is able to fire a counter missile with a velocity of $\vec{v} = [-1.75, -6.5]$ units/min, how much time do they have before they must fire their counter missile? [3 min]
- 25. In Question 24, if the Destroyer wanted to have the most accuracy with a missile, they would want to hit the enemy missile at the time when it is closest to the Destroyer.
 - a. Determine the time after the enemy missile is shot when the enemy missile is closest to the Destroyer. [13.6923 min]
 - b. What is the coordinate of the point of impact? [(17.07695, -5.6154)]

