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Chapter 1: Stoichiometric relationships – fast 
facts 
1.1 Introduction to the particulate nature of matter and chemical change 

Physical and chemical properties depend on the ways in which different atoms combine. 

• Elements are single substances, composed of atoms of the same type. 
• Compounds contain a fixed ratio of atoms of different elements and have different properties from their 

component elements. 
• Mixtures contain more than one element or compound that are not chemically combined. 
• Kinetic-molecular theory describes the differences in the properties of solids, liquids, and gases on the basis 

of the different kinetic energies of the particles. 
• Every substance changes state by melting/freezing and boiling/condensing at a defined temperature at 

constant pressure. 
• Chemical equations summarize the change when reactants are converted to products.  
• State symbols indicate the state of a substance: (s) solid, (l) liquid, (g) gas and (aq) aqueous solution 

(dissolved in water). 
• The coefficients in a chemical equation describe the relative amounts of reactants and products. 

1.2 The mole concept 
The mole makes it possible to correlate the number of particles with a mass that can be measured. 

• The amount of substance (n) is measured in moles (mol). The mole concept applies to all species: atoms, 
molecules, ions, electrons, formula units. 

• 1 mol contains the same number of chemical species as there are atoms in exactly 12 g of the isotope carbon-
12, 

6
12 C . 

• 1 mol of any substance contains 6.02 × 1023 species. 
• 6.02 × 1023 mol–1 is called Avogadro’s constant (L). It has units as it is the number of particles per mole. 
• The relative atomic mass (Ar) of an element is the average mass of an atom according to relative abundances 

of its isotopes, on a scale where the mass of one atom of 
6

12 C  is 12 exactly. It has no units. 
• The relative molecular mass (Mr) is the sum of the relative atomic masses of the atoms in the molecular 

formula. 
• The relative formula mass of an ionic compound is the sum of the relative atomic masses of the ions in the 

formula. 
• The molar mass (M) is the relative mass expressed in g and has units of g mol–1. 
• The empirical formula gives the ratio of the atoms of different elements in a compound. It is the molecular 

formula expressed as its simplest ratio. 
• The molecular formula is a whole-number multiple of the empirical formula. 
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• The empirical formula of a compound containing the elements X, Y and Z can be determined by completing 
the following table: 

 Mass/g or % of X Mass/g or % of Y Mass/g or % of Z 

Mass / g mX mY mZ 

n / mol = mX/MX = mY/MY = mZ/MZ 

Simplest ratio (divide by 
smallest amount in 
previous row) 

   

• The molecular formula shows the number of atoms of each element present in a molecule. 

• Number of mol = mass/molar mass: n = m/M 

• Number of particles = number of mol × Avogadro’s constant: N = nL 

1.3 Reacting masses and volumes 

Mole ratios in chemical equations can be used to calculate reacting ratios by mass and gas volume. 

• The limiting reactant determines the theoretical yield of product. The other reactants are in excess. 
• The theoretical yield is the mass or amount of product produced according to the chemical equation, 

assuming 100% reaction of the limiting reagent. 
• Percentage yield = (experimental yield/theoretical yield) × 100% 
• The kelvin is the SI unit of temperature: T (K) = T (°C) + 273 
• Units of volume: 1 dm3 = 1 × 10–3 m3 = 1 × 103 cm3 

• For a fixed mass of an ideal gas at constant T:    P = k1/V (k1 constant) 
 

 
 
 
 
 
 

• For a fixed mass of an ideal gas at constant V:    P = k2T 
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• The combined gas law: for a fixed mass of gas: 

P1V1

T1

=
P2V2

T2

   
• The ideal gas equation: PV = nRT 
• R =  8.31 J K–1 mol–1, T must be in K. 
• Temperature (in K) is a measure of the average kinetic energy of the particles. Particles have minimum kinetic 

energy at absolute zero (0 K). 
• As kinetic energy = ½mv2 and all gases have the same kinetic energy at the same temperature, particles with 

smaller mass move faster. 
• Avogadro’s law states that equal volumes of different gases contain equal numbers of particles at the same 

temperature and pressure. 
• Number of mol = volume/molar volume  = V/Vmol 
• Molar volume, Vm, of any gas at STP = 2.27 × 10–2 m3 mol–1. 
• STP for gases is standard temperature (0 °C or 273 K) and pressure (100 kPa). 
• Density = mass/volume; ρ = m/V 
• A solution is a homogeneous mixture of a liquid (the solvent) with another substance (the solute). The solute 

can be solid, liquid, or gas but the solvent is generally a liquid. 
• Concentration is the amount of solute in a known volume of solution. It can be expressed either in g dm–3 or 

mol dm–3. Concentration in mol dm−3 is often represented by square brackets around the substance: 
[solute] (mol dm−3) = nsolute (mol)/Vsolution (dm3) nsolute = [solute] × Vsolution (dm3) 

nsolute = [solute] × Vsolution (cm3)/1000 
• Titration is a chemical technique in which one solution is used to analyse another solution to find its 

concentration or amount. 
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Chapter 3: Periodicity – fast facts 
3.1 The Periodic Table 

The arrangement of elements in the Periodic Table helps to predict their electron configuration. 

• The Periodic Table arranges elements according to increasing atomic number / increasing number of protons. 
• The horizontal rows are called periods and vertical columns are called groups. 
• The period number (n) is the outer energy level that is occupied by electrons. 
• Elements in the same period have outer electrons in the same energy level. 
• The groups are numbered from 1 to 18.  
• Elements in the same group have the same number of outer electrons and have similar chemical properties. 
• The Periodic Table is arranged in 4 blocks – s, p, d and f – which are associated with the highest sub-level 

occupied by electrons. 
• The position of an element is related to the electron configuration of its atoms. Magnesium, for example, is in 

Period 3, as it has three occupied energy levels, and in Group 2, as there are two electrons in its outer energy 
level. It is in s block as it has outer electrons in the s sub-level.  

• Metals are found on the left of the Periodic Table and non-metals on the right. Metalloids form a diagonal 
staircase between the metals and non-metals. 

• Group 1 = alkali metals, Group 17 = halogens,  Group 18 = noble gases. 
• The transition metals are in the large section of d-block elements in the middle of the Periodic Table from Sc 

to Zn, etc. Zn is not a transition metal because it does not form ions with incomplete d sub-levels. 
• Lanthanoids and actinoids are metals in the first and second row of the f block. 

3.2 Periodic trends 

Elements show trends in their physical and chemical properties across periods and down groups. 

• The chemical and physical properties of elements arranged in order of increasing atomic numbers vary 
periodically. Periodicity is the regular repetition of properties of elements arising from patterns in their 
electron arrangement. 

• Effective nuclear charge refers to the nuclear pull experienced by the outer electrons in an atom, taking into 
account the shielding effect of inner full shells of electrons.  

• Atomic radius:  atomic radii decrease along a period as the nuclear charge increases and electrons are added 
to the same outer shell. The attraction between the outer electrons and nucleus increases. 

• As a group is descended and the number of occupied energy levels increases, the atomic radii increase. 
• Ionic radius: Cations are smaller than their parent atoms, as the formation of positive ions involves the loss of 

the outer shell. 
• Anions are larger than their parent atoms, as their formation involves the addition of electrons into the 

outer shell. The increased electron repulsion between the electrons in the outer energy level increases 
the radius of the outer shell. 

• Cation   <  atom  <  anion 
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• Patterns in ionic radii across a period are more complex. 
• The ionic radii decrease from Groups 1 to 14 for the positive ions. The ions Na +, Mg2 +, Al3 + and Si4 + are 

isoelectronic and have the same electron configuration (1s2 2s2 2p6 ). The decrease in ionic radius is due 
to the increase in nuclear charge with atomic number across the period, which increases the attraction 
between the nucleus and the outer electrons. 

• The ionic radii decrease from Groups 14 to 17 for the negative ions. The ions Si4–, P3–, S2– and Cl– are 
isoelectronic and have the same electron arrangement (1s2 2s2 2p6 3s2 3p6). The decrease in ionic radius 
is due to the increase in nuclear charge across the period. 

• The positive ions are smaller than the negative ions in the same period, as the former have one less 
occupied electron shell. 

• The first ionization energy (IE) of an element is the minimum energy required to form one mole of singly 
charged positive ions (M+) by removing an electron from each atom (M) in the gaseous state: M(g) → M +(g) + 
e– (units: kJ mol–1). 

• First ionization energies decrease down a group. This is due to the increased distance between the nucleus 
and the outer energy level that reduces the force of attraction between the nucleus and the outer electrons. 

• Ionization energies increase along a period due to the increase in effective nuclear charge, which causes the 
outer electrons to be held more tightly. 

• There are regular discontinuities in the trend of increasing ionization energies along a period, due to the 
existence of sub-levels within the main energy levels.  

• Electron affinity is the energy change when one mole of electrons is added to one mole of gaseous atoms to 
form one mole of gaseous ions: X(g) + e– → X–(g) 

• First electron affinities are usually endothermic, and increase along a period due to increasing nuclear charge. 
• Electronegativity is a measure of the attraction of a nucleus for bonding electrons.  
• Electronegativity increases along a period and decreases down a group.  
• The noble gases are not assigned electronegativities as they do not readily form bonds with other elements. 
• The electronegativities of diagonal elements remain approximately the same as both the group and period 

number increase. Boron and aluminium, for example, both have electronegativities of 1.6. 
• The electronegativity of H is the same as that of P. 
• Metals have low ionization energies and electronegativities; non-metals have high ionization energies and 

electronegativities.  
• The melting points decrease down Group 1 as there is a decrease in the strength of the metallic bonding. The 

increase in ionic radii reduces the force of the attraction between the M+ ions and the delocalized electrons. 
• The melting points increase down Group 17, as there is an increase in the strength of London (dispersion) 

forces with increasing number of electrons. 
• The chemical properties of elements are generally due to the number of electrons in the outer energy level of 

their atoms. 
 
Group 1 

• All the metals are too reactive to be found native in nature. 
• They generally donate electrons and act as reducing agents: M → M+ + e– 
• Reactivity increases down the group with the decrease in ionization energies. 
• Their ability to conduct electricity is also due to the mobility of their outer electron. 
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• The alkali metals react with water to produce hydrogen and the metal hydroxide. The resulting solution is 
alkaline owing to the presence of hydroxide ions: 2M(s) + 2H2O(l) → 2MOH(aq) + H2(g) 

Group 17 

• The halogens are diatomic non-polar molecules. 
• They generally accept electrons and act as oxidizing agents: X2 + 2e– → 2X– 
• Reactivity decreases down the group, as the atom gets larger and attraction for extra electrons decreases. 

The more reactive halogens, X2, displace the less reactive halogens, Y, from their compounds: 
X2 + 2Y– → Y2 + 2X– 
e.g. the more reactive Cl displaces Br: Cl2 + 2Br– → Br2 + 2Cl– 

• The halogens react with the Group 1 metals to form ionic halides: 2M + X2 → 2MX 
The most vigorous reaction occurs between the elements which are furthest apart in the Periodic Table. 

Period 3 oxides 

• Oxides change from basic through amphoteric to acidic across a period.  

Formula and 
state at room 
temperature 

Na2O(s) MgO(s) Al2O3(s) SiO2(s) P4O10(s)/
P4O6(s) 

SO3(l)/ 
SO2(g) 

Cl2O7(l)/ 
Cl2O(g) 

Structure  Ionic Giant covalent Molecular covalent 

Acid/base 
character 

Basic Amphoteric Acidic 

Na2O(s) + H2O(l) → 2NaOH(aq) 
MgO(s) + H2O(l) → Mg(OH)2(aq) 

P4O10(s) + 6H2O(l) → 4H3PO4(aq) 
SO3(g) + H2O(l) → H2SO4(aq) 
As SiO2(s) is insoluble it does not change the pH if 
added to H2O. 
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13.1 First-row d-block elements 
The transition elements have characteristic properties; these properties are related to their all  

having incomplete d sub-levels. 

• Transition metals have partially filled d orbitals in their atoms or ions. 
• Zn is not a transition element because it has a full d sub-level in its atoms and ions. 
• Characteristic properties include: variable oxidation number, complex ion formation with ligands, existence of 

coloured compounds, have catalytic and magnetic properties. 
• Multiple oxidation states arise because the 3d and 4s sub-levels are close in energy and both are involved in 

bonding. 
• All d-block elements except Sc show an oxidation state of +2. 
• All d-block elements except Zn show an oxidation state of +3. 
• A ligand is a molecule or negative ion that donates a pair of electrons to a central metal ion to form a covalent 

(coordinate) bond. They are Lewis bases. 
• Complex ions are formed when a central metal ion is bonded to a ligand with a coordinate bond. Examples 

include [Fe(H2O)6]3+, [Fe(CN)6]3–, [CuCl4]2–, and [Ag(NH3)2]+. 
• The charge on a complex ion is the sum of the charges of the metal ion and the ligands. 
• Transition metals act as heterogeneous catalysts as they can provide a surface for reaction: they use the 3d 

and 4s electrons to form weak bonds to reactant molecules.  
• Magnetic properties are a result of unpaired electrons in the transition metal atom or ion.  

13.2 Coloured complexes 

d orbitals have the same energy in an isolated atom, but split into two sub-levels in a complex ion.  
The electric field of ligands cause the d orbitals in complex ions to split so that the energy of an  

electron transition between them corresponds to a photon of visible light. 

 
Transition metal ions are coloured due to d–d electron transitions between d orbitals which are split in the 
electric field due to the presence of the ligands. 
• The colour observed is complementary to the colour absorbed, and can be deduced from the colour wheel. 
• The colour of a complex depends on the identity of the metal ion, the oxidation state of the metal, and the 

identity of the ligand. 
• Ions with higher charge and ligands with greater charge density produce a greater split in the d orbitals. 
• The spectrochemical series arranges the ligands according to the energy separation between the two sets of d 

orbitals. 
• Polydentate ligands form more than one coordinate bond with the metal ion.  
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Chapter 4: Chemical bonding and structure fast 
facts 
4.1 Ionic bonding and structure 

Ionic compounds consist of ions held together in lattice structures by ionic bonds. 

• An ion is a charged particle. 
• The number of charges on an ion is equal to the number of electrons lost (positive ion) or gained (negative 

ion) by an atom. 
• Metals lose electrons to form positive ions (cations); non-metals gain electrons to form negative ions (anions). 
• The charge on an ion can usually be predicted from the group of the element in the Periodic Table; transition 

metal elements can form more than one ion. 
• Common polyatomic ions include: OH–, HCO3

–, NO3
–, CO3

2–, SO4
2–, PO4

3–, NH4
+. 

• Ionic compounds consist of ions held together by forces of electrostatic attraction. 
• Ionic compounds are electrically neutral, as they consist of a lattice in which the total number of positive 

charges is balanced by the total number of negative charges. The formula of the compound is expressed as its 
simplest ratio, e.g. the ions Xm+ and Yn– will form the compound XnYm. 

• In the ionic lattice, each ion is surrounded by a fixed number of ions of the opposite charge, known as the 
coordination number. 

• Ionic compounds usually have high melting and boiling points, and are more soluble in water than in non-
polar solvents. They conduct electricity when molten or in aqueous solution but not when solid. 

4.2 Covalent bonding 

Covalent compounds form by the sharing of electrons. 

• A covalent bond is the electrostatic attraction between a pair of electrons and positively charged nuclei. 
• A molecule is a group of atoms held together by covalent bonds. 
• Two pairs of shared electrons = double bond. 
• Three pairs of shared electrons = triple bond. 
• Increasing number of bonds  shorter and stronger bonds. 
• Polar bonds form when the two atoms bonded together have different electronegativity values. 
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4.3 Covalent structures 
Lewis (electron dot) structures show the electron domains in the valence shell and are used to  

predict molecular shape. 

• Lewis (electron dot) structures show all the valence electrons of the atoms in the molecule or polyatomic ion. 
• The octet rule refers to the fact that most atoms form a stable arrangement with eight electrons in their outer 

shell. 
• Exceptions to the octet rule include: 

less than an octet – BeCl2, BF3 (central atom very small) 
expanded octet – PCl5, SF6 (central atom from third period or beyond). 

• VSEPR theory: the total number of electron domains determines their geometrical arrangement by maximum 
repulsion; the shape of the molecule then depends on the number of bonding pairs within this arrangement. 

Number of charge centres Number of bonding pairs Shape of molecule 

2 2 linear 

3 3 planar triangular 

3 2 V-shaped 

4 4 tetrahedral 

4 3 triangular pyramidal 

4 2 V-shaped 

5 5 triangular bipyramidal 

5 4 see-saw 

5 3 T-shaped 

5 2 linear 

6 6 octahedral 

6 5 square pyramidal 

6 4 square planar 

• Resonance structures occur when there is more than one possible position for a double bond. 
• Carbon, silicon, and silicon dioxide form giant covalent molecules. 
• Carbon occurs as allotropes with different bonding within giant molecules – diamond, graphite, fullerene, and 

graphene. 
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• The polarity of a molecule depends on: 

i the polarities of its bonds 
ii its molecular shape – whether cancellation occurs between the polar bonds. 

• Coordinate bonds form when both the shared electrons originate from the same atom. 

4.4 Intermolecular forces 
The physical properties of molecular substances result from different types of forces between their molecules. 

• The forces between molecules are largely determined by the charge separation within the molecule: 
• non-polar molecules  London (dispersion) forces 
• polar molecules  dipole–dipole attraction 
• polar molecules in which H is bonded to O, N, or F  hydrogen bonding. 

• van der Waals forces refer to London (dispersion) and dipole–dipole attractions. 
• In order of strength: 

London (dispersion) < dipole–dipole < hydrogen bonding 
• The stronger the intermolecular force, the lower the volatility (higher boiling point). 
• Polar substances are more soluble in water and less soluble in non-polar solvents. 
• Covalent compounds are generally not good electrical conductors, unless they are able to ionize in solution, 

e.g. HCl(aq). 

 Covalent substances Ionic compounds 

Volatility low high 

Electrical conductivity low high 

Solubility in polar solvents low high 

Solubility in non-polar solvents high low 

4.5 Metallic bonding 

Metallic bonds involve a lattice of cations with delocalized electrons. 

• Metal atoms are held together by the electrostatic attraction between a lattice of positive ions and 
delocalized electrons. 

• The strength of the metallic bond increases with the charge on the cation and decreases with the radius of 
the ion. 

• The properties of metals – electrical and thermal conductivity, malleability, ductility − are a result of the 
delocalized electrons. 

• Alloys form as a result of the non-directional bonding in metals and often have enhanced properties.  
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14.1 Further aspects of covalent bonding and structure 
Larger structures and more in-depth explanations of binding systems often require more sophisticated concepts 

and theories of bonding. 

• Sigma (σ) bonds form when atomic orbitals (s, p, or hybridized) overlap along the bond axis; all single bonds 
are σ bonds. 

• Pi (π) bonds form when p atomic orbitals overlap laterally; the electron density is concentrated above and 
below the bond axis. 

• Double bond = one σ bond and one π bond. 
• Triple bond = one σ bond and two π bonds. 
• Atoms in Period 3 and below can expand their octet using unoccupied d orbitals. This gives rise to molecules 

with 5 or 6 electron domains around the central atom. 
• The number of resonance structures that can be drawn for a molecule is the same as the number of possible 

positions for a double bond. 
• Delocalization of π electrons leads to greater stability and bonds of intermediate length and strength. 
• Formal charge (FC) can be used to determine which of some possible structures is the preferred structure. 

The most stable structure is the one with the lowest values for formal charge for the atoms. 
• FC = (number of valence electrons) –  

[½(number of bonding electrons) – (number of non-bonding electrons)] 
• Ozone is a resonance hybrid with a bond order of 1.5. Oxygen is a diatomic molecule with a bond order of 2. 

Ozone is therefore dissociated by light of longer wavelength. 
• The catalytic breakdown of ozone by CFCs and NOx has contributed to significant depletion of the ozone layer. 

14.2 Hybridization 

Hybridization results from the mixing of atomic orbitals to form the same number of new equivalent hybrid 
orbitals that can have the same mean energy as the contributing atomic orbitals. 

• Hybridization occurs when different atomic orbitals mix to form new atomic orbitals for bonding. 
• The shape of hybridized orbitals: 

sp3  tetrahedral 

sp2  planar triangular 

sp  linear 
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Chapter 6: Kinetics – fast facts 
6.1 Collision theory and rates of reaction 

The greater the probability that molecules will collide with sufficient energy and proper orientation,  
the higher the rate of reaction. 

• Rate of reaction = decrease in concentration of reactants or increase in concentration of products per unit 
time 

• Units of rate of reaction = mol dm–3 s–1. 
• Concentration changes in a reaction can be followed indirectly by measuring changes in mass, volume, or 

absorbance.  
• Rate of reaction at time t = gradient of tangent to curve of [R] or [P] vs time, at time t. 
• Absolute temperature is a measure of average kinetic energy. 
• Activation energy, Ea, is the minimum KE particles must have in order to react. 
• Collision theory: collisions between reactant particles will lead to reaction when: 

i the particles have KE > Ea and 
ii the particles have the correct collision geometry. 

• The Maxwell–Boltzmann distribution shows the number of particles in a sample with a particular value of 
kinetic energy. The area under the curve represents the number of particles. It can be used to illustrate the 
effects of different factors on the rate of reaction. 

• The effects of temperature, concentration, pressure, particle size, and catalysts on the rate of reaction can all 
be interpreted in terms of the collision theory. 

• Catalysts speed up reactions by providing an alternate reaction route with a lower activation energy, but are 
not themselves chemically changed by the reaction. Catalysed reactions form a transition state of lower 
energy than the uncatalysed reaction.  

• Enzymes are biological catalysts. 

16.1 Rate expression and reaction mechanism 
• Rate expressions can only be determined empirically and these limit possible reaction mechanisms. In 

particular cases, such as a linear chain of elementary reactions, no equilibria, and only one significant 
activation barrier, the rate equation is equivalent to the slowest step of the reaction. 

• For a reaction with reactants A and B: 
rate = k [A]m [B]n 
where k = rate constant 
m and n are the orders of reaction with respect to A and B respectively 
m + n = overall order of reaction. 

• The value of k, the rate constant, depends on the particular reaction and on the temperature. 
• The units of k depend on the order of the reaction. 
• Constant half-life ⇒ first-order reaction. 
• Many reactions proceed in a series of small steps known as elementary steps. 
• Molecularity = the number of reactant particles taking part in an elementary step. 
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• The rate-determining step = the slowest step in the reaction. It is the step with the highest activation energy. 
• The order of the reaction is determined by the molecularity of the rate-determining step. 
• Rate equations can only be derived from empirical data. The order of reaction with respect to a particular 

reactant can be determined by following the change in rate of reaction as the concentration of that reactant 
is changed. 

• Concentration–time and rate–concentration graphs can be used to represent zero-, first-, and second-order 
reactions. 

   
• A proposed mechanism for a reaction must be consistent with: 

i the overall reaction’s stoichiometry 
ii kinetic data derived from experiment 

16.2 Activation energy 
The activation energy of a reaction can be determined from the effect of temperature on reaction rate. 

• The Arrhenius equation (given in section 1 of the IB data booklet) shows the temperature dependence of the 
rate constant. 

• The Arrhenius plot, ln k versus 1/T, can be used to calculate the activation energy Ea. The gradient of the line 
in the Arrhenius plot = –Ea/R 

• The Arrhenius equation shows that increasing the temperature increases the value of the rate constant k. But 
the extent of this increase depends on the value of Ea for the reaction. Reactions with higher values for Ea 
have a higher temperature dependency of k than reactions with lower values for Ea. 

Get it straight 
• All substances at the same temperature have the same average kinetic energy. 
• The rate equation cannot be predicted from the overall stoichiometry of the reaction. 
• The units of the rate constant k vary – they depend on the order of the reaction. 
• Activation energy is not temperature dependent. 
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Chapter 7: Equilibrium – fast facts 
7.1 Equilibrium 

Many reactions are reversible. These reactions will reach a state of equilibria when the rates of the forward 
reaction and reverse reaction are equal. The position of equilibrium can be controlled by changing the conditions. 

• Equilibrium state is when rate of forward reaction = rate of backward reaction in a closed system. 
• The equilibrium mixture contains a fixed concentration of reactants and products. 
• For a reaction aA + bB → cC + dD 

  
Kc = [C]c[D]d

[A]a[B]b   

• Kc, the equilibrium constant, is a constant for a given reaction at a specified temperature. 
• The higher the value of Kc the further to the right the equilibrium mixture lies. 
• Q, the reaction quotient, is a measure of the relative amounts of reactants and products in a reaction mixture 

at a particular time. It is calculated by substituting non-equilibrium values for reactant and product 
concentration into the equilibrium expression: 
if Q = Kc, then the reaction is at equilibrium 
if Q < Kc, reaction is not at equilibrium; reaction proceeds to right in favour of products 
if Q > Kc, reaction is not at equilibrium; reaction proceeds to left in favour of reactants. 

• Manipulations of the same reaction at the same temperature are expressed by corresponding changes to the 
value of Kc: 
inversing the reaction ⇒ Kc

–1 
doubling the reaction coefficients ⇒ Kc

2 
halving the reaction coefficients ⇒ √Kc 
adding together two reactions ⇒ Kc1 × Kc2 

• When a change is applied to an equilibrium mixture, the composition will change to minimize the effect of the 
change. The new equilibrium mixture will have different concentrations of reactant and product, but the 
value of Kc will be unchanged at the same temperature. 

• Catalysts do not change the yield or the equilibrium mixture because they have an equal effect on the 
forward and backward reactions. 

• Optimum conditions for an industrial process are based on equilibrium, kinetic, and economic considerations. 
• When Kc is very small, [R]equilibrium ≈ [R] initial 
• The equilibrium law is used in calculations of reacting concentrations and equilibrium mixtures. 
• Equilibrium occurs at a maximum value of entropy and a minimum value of Gibbs free energy. 
• Gibbs free energy, ∆G, and the equilibrium constant, Kc, can both be used to measure the position of an 

equilibrium reaction. They are related by the expression ∆G = –RT ln K 
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17.1 The equilibrium law 
The position of equilibrium can be quantified by the equilibrium law. The equilibrium constant for a particular 

reaction only depends on the temperature.  

• When Kc is very small, [R]equilibrium ~ [R] initial. 
• The equilibrium law is used in calculations of reacting concentrations and equilibrium mixtures. 
• Equilibrium occurs at a maximum value of entropy and a minimum value of Gibbs free energy. 
• Gibbs free energy, ∆G, and the equilibrium constant, Kc can both be used to measure the position of an 

equilibrium reaction. They are related by the expression  ∆G = -RT lnK 
 

Get it straight 
• The only thing that changes the value of Kc for a reaction is the temperature. 
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Chapter 8: Acids and bases – fast facts 
8.1 Theories of acids and bases 

Many reactions involve the transfer of a proton from an acid to a base. 

• Brønsted–Lowry acid = proton donor. 
• Brønsted–Lowry base = proton acceptor. 
• A conjugate acid–base pair differ by a single proton: conjugate base + H+ ⇌ conjugate acid 
• Amphiprotic species can act as both Brønsted–Lowry acids and bases. 

8.2 Properties of acids and bases 

The characterization of an acid depends on empirical evidence such as the production of gases in reactions with 
metals, the colour changes of indicators, or the release of heat in reactions with metal oxides and hydroxides. 

• acid + metal → salt + hydrogen 
• acid + base → salt + water + carbon dioxide 
• acid + carbonate → salt + water + carbon dioxide 
• Soluble bases are called alkalis. 
• The reaction between an acid and a base to produce a salt is known as neutralization. 
• Neutralization reactions are exothermic. 
• Titration is a technique used to deliver precise volumes of acid and base in a neutralization reaction. It is often 

used to determine the concentration of a solution. 

8.3 The pH scale 

The pH scale is an artificial scale used to distinguish between acid, neutral, and basic/alkaline solutions. 

• The pH scale is a convenient measure of the [H+] in a solution, which enables different solutions to be 
compared. 

• pH = –log10 [H+]; [H+] = 10–pH 
• At 25 °C: 

pH < 7  [H+] > [OH–] = acidic 
pH = 7  [H+] = [OH–] = neutral 
pH > 7  [H+] < [OH–] = basic 

• A change of one pH unit = a ten-fold change in [H+]. 
• pH can be determined using universal indicator and pH meters. 
• The ionic product constant of water, Kw, has a fixed value at a fixed temperature. 
• Kw = [H+] [OH–] 
• The concentrations of H+ and OH– are inverse in an aqueous solution. 
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8.4 Strong and weak acids and bases 
The pH depends on the concentration of the solution. The strength of acids or bases depends  

on the extent to which they dissociate in aqueous solution. 

• Strong acids and bases dissociate almost completely in solution. 
• Weak acids and bases dissociate only partially in solution. 
• Strong acids are good proton donors and form weak conjugate bases. 
• Strong bases are good proton acceptors and form weak conjugate acids. 
• Strong acids: HCl, H2SO4, HNO3 
• Strong bases: LiOH, NaOH, KOH, Ba(OH)2 
• Weak acids: CH3COOH, H2CO3 
• Weak bases: NH3, C2H5NH2 
• Comparisons of the strength of acids and bases must use solutions of equal concentration.  
• Strong and weak acids and bases can be distinguished by: 

i pH measurement/indicator 
ii conductivity 
iii rate of reaction with metals, metal oxides, metal hydroxides, metal hydrogencarbonates and metal 

carbonates. 

18.1 Lewis acids and bases 

The acid–base concept can be extended to reactions that do not involve proton transfer. 

• Lewis acid = lone pair acceptor. 
• Lewis base = lone pair donor. 
• Lewis acid/base reactions lead to coordinate bonds. 
• A nucleophile is an electron-rich species that donates an electron pair – it is a Lewis base. 
• An electrophile is an electron-deficient species that accepts an electron pair – it is a Lewis acid. 

18.2 Calculations involving acids and bases 

The equilibrium law can be applied to acid–base reactions. Numerical problems can be  
simplified by making assumptions about the relative concentrations of the species involved.  

The use of logarithms is also significant here. 

• pH = –log10 [H+]; [H+] = 10–pH 
• pOH = –log10 [OH–]; [OH–] = 10–pOH 
• Kw = [H+] [OH–] = 1.00 × 10–14 at 25 °C 
• 10–pH × 10–pOH = 1.00 × 10–14 at 25 °C 
• pH + pOH = 14.00 at 25 °C 

• pKw = –log10 (Kw); Kw = 10−pKw  
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• pH + pOH = pKw 
• The value of Kw, and therefore of pH, is temperature dependent. 
• For strong acids and strong bases, pH can be calculated from the concentration because full dissociation is 

assumed. 
• Weak acids and weak bases, pH cannot be calculated from the concentration because full dissociation is not 

assumed. 
• For weak acids and weak bases, the acid and base dissociation constants, Ka and Kb, give a measure of the 

relative strengths of the acid and base. Higher values for Ka and Kb represent stronger acids and bases. 

• Ka =
[H3O

+ ][A– ]
[HA]

  

• 
  
Kb = [BH+ ][OH– ]

[HA]
  

• The relationship between the values of Ka and Kb for a conjugate acid/base pair is inverse. 
• Ka × Kb = Kw 

• pKa = –log10 [Ka]; [Ka] =  10−pKa  

• pKb = –log10 [Kb]; [Kb] =  10−pKb  
• pKa + pKb = pKw 
• Lower values for pKa and pKb represent stronger acids and bases. 

18.3 pH curves 

pH curves can be investigated experimentally but are mathematically determined by the  
dissociation constants of the acid and base. An indicator with an appropriate end point can be  

used to determine the equivalence point of the reaction. 

• A buffer solution is resistant to changes in pH on the addition of a small amount of acid or base. 
• Buffer solutions consist of a weak acid and its conjugate base or a weak base and its conjugate acid. 
• Buffers respond to added acid by reacting with the base in the buffer, and to added base by reacting with the 

acid in the buffer. These reactions cause a shift in the equilibria positions and by removing added H+ or OH– 
keep the pH approximately constant.  

• The pH of a buffer solution depends on: 
i the Ka or Kb of the acid/base 
ii the ratio of the concentration of acid/base to salt. 

• The pH of a buffer does not change with dilution. 
• The pH of a buffer is temperature dependent. 
• The buffer capacity refers to the amount of acid or base that can be added before the pH changes 

dramatically. This is reduced with dilution of the buffer. 
• The pH of a salt solution depends on the hydrolysis of its ions in aqueous solution. This is determined by the 

parent acid and base. 
• Cation hydrolysis, the conjugate from weak bases, causes the pH of the solution to decrease. 
• Anion hydrolysis, the conjugate from weak acids, causes the pH of the solution to increase.  
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• pH of salt solutions are: 

 Strong acid  Weak acid 

Strong base neutral pH 7 basic pH >7 

Weak base acidic pH <7 difficult to generalize 

• Equivalence occurs when stoichiometrically equal amounts of acid and base have reacted together, so the 
solution contains a salt and water only. The pH of the salt formed depends on the relative strength of acid 
and base that reacted together, as shown in the table above. 

• pH curves show the change in pH as a base is added to an acid, or vice versa, in a titration reaction. 
• The intercept with the pH axis shows the initial pH of the acid or base. 
• The buffer region on the pH curve represents the region where small additions of acid or base result in little 

or no change in pH. 
• There is a jump in the pH at equivalence point, known as the point of inflection.  
• The pH at equivalence (half-way up the jump) depends on the relative strengths of the acid and base reacted 

together. This is due to the different pH values of the salt solutions formed. 
• pH at half-equivalence point = pKa of acid 
• An indicator is a weak acid or a weak base, in which the acid or base and its conjugate have different colours. 
• The pH at which an indicator changes colour is known as its end-point. This occurs when the concentration of 

dissociated and undissociated forms are equal: [HIn] = [In–] 
• The end-point of an indicator is when pH = its pKa or pKb. 
• An indicator is appropriate for use in a titration when its end-point (pKa/pKb value) falls within the range of 

the pH of the equivalence point. 
• As different titrations have different pH at the equivalence point, different indicators must be chosen to signal 

the equivalence point effectively. 

8.5 Acid deposition 

Increased industrialization has led to greater production of nitrogen and sulfur oxides leading to acid rain,  
which is damaging our environment. These problems can be reduced through collaboration with  

national and intergovernmental organizations. 

• Normal rainwater is acidic due to dissolved CO2. 
• Acid deposition includes all forms of precipitation from the atmosphere as gas or solid that have a pH <5.6. 
• Acid deposition results from oxides of nitrogen and sulfur: HNO3, HNO2, H2SO4, and H2SO3 dissolved in water. 
• Sulfur oxides are produced mostly from the burning of fossil fuels, especially coal. The reactions produce SO2 

that is oxidized further to SO3. Reactions with water form H2SO4 and H2SO3. Photo-oxidation involving free 
radicals may occur. 

• Nitrogen oxides are produced mostly from internal combustion engines. NO is the primary pollutant which is 
oxidized to NO2, which then dissolves in water to form HNO3 and HNO2. 

• Acid deposition has impacts on structures, especially limestone and metals, due to erosion and corrosion. The 
reactions are the same as those covered in section 8.2. 

• Acid deposition has negative effects on plant and animal life and on bodies of water. 
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• Responses to acid deposition include removing sulfur from fuels (hydrodesulfurization) and/or from flue 
gases. Nitrogen oxides are reduced by catalytic converters in vehicles and by carrying out combustion at 
lower temperatures. 

Get it straight 
• Strong acids dissociate fully; concentrated acids have a high ratio of acid to water. Both of these will increase 

the [H+] and so decrease the pH. 
• Weak acids do not dissociate fully; dilute acids have a low ratio of acid to water. Both of these will decrease 

the [H+] and so increase the pH. 
• Acids and bases can be strong and dilute, e.g. 0.0001 mol dm–3 HCl, or weak and concentrated, e.g. 10.0 mol 

dm–3 CH3COOH, as well as strong and concentrated, or weak and dilute. 
• Strong/conc. acid  high [H+]  low pH  high pOH 
• Strong/conc. base  high [OH–]  low pOH  high pH 
• The stronger the acid  higher Ka  lower pKa 
• The stronger the base  higher Kb  lower pKb 
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Chapter 9: Oxidation and reduction – fast facts 
9.1 Oxidation and reduction 

Redox (reduction–oxidation) reactions play a key role in many chemical and biochemical processes. 

• Oxidation = gain of oxygen; reduction = loss of oxygen 
• Oxidation = loss of hydrogen; reduction = gain of hydrogen 
• Oxidation = loss of electrons; reduction = gain of electrons 
• Oxidation = increase in oxidation state; reduction = decrease in oxidation state 
• Oxidizing agents oxidize other species and themselves get reduced. 
• Reducing agents reduce other species and themselves get oxidized. 
• Transition metals and most main-group non-metals have variable oxidation states. 
• Oxidation numbers are used to represent the oxidation states of elements in names of compounds, using 

Roman numerals. 
• The activity series ranks metals according to the ease with which they undergo oxidation. 
• The more reactive a metal, the stronger it is as a reducing agent. 
• The more reactive a non-metal, the stronger it is as an oxidizing agent. 
• More reactive metals are able to reduce the ions of less reactive metals in displacement reactions.  
• More reactive non-metals are able to oxidize the ions of less reactive non-metals. 
• Half-equations show the electrons lost/gained in oxidation/reduction reactions and can be used as a step in 

balancing a redox equation. 
• Redox titrations are used to determine concentrations of solutions by finding the equivalence point when two 

reactants have reacted stoichiometrically, by transferring electrons from the reducing agent to the oxidizing 
agent. 

• The Winkler method uses redox titration to measure the dissolved oxygen content of water. 

9.2 and 19.1 Electrochemical cells 
Voltaic cells convert chemical energy to electrical energy and electrolytic cells convert  

electrical energy to chemical energy. Energy conversions between electrical and chemical  
energy lie at the core of electrochemical cells. 

Voltaic cells 
• Voltaic cells convert energy from spontaneous exothermic chemical processes to electrical energy. They are 

formed by connecting together two half-cells by a salt bridge and an external circuit. 
• The anode is the electrode where oxidation occurs. It has a negative charge in a voltaic cell. 
• The cathode is the electrode where reduction occurs. It has a positive charge in a voltaic cell. 
• Electrons flow through the external circuit of a voltaic cell from anode to cathode. Voltaic cells generate an 

EMF known as the electrode potential, E. 
• The higher the Eθ value of a cell the greater its tendency to be reduced. 
• The lower the Eθ value of a cell the greater its tendency to be oxidized. 



   
© Pearson Education Ltd 2014. For more information about the Pearson Baccalaureate series please visit 

www.pearsonbacconline.com 

• The standard hydrogen electrode is used as the reference standard for voltaic cells, and is assigned a value of 
0.00 V. 

• The standard electrode potential of a half-cell is measured with reference to the standard hydrogen 
electrode, operating under standard conditions. 

• Using reduction potentials (with the signs as given):  
Ecell

θ = Ehalf-cell where reduction occurs
θ − Ehalf-cell where oxidation occurs

θ   
 

• Ecell
θ  must be positive for a spontaneous reaction. 

• The equation ∆Gθ= –nFEθ 
• Spontaneous reactions have negative ∆Gθ and positive Eθ. 
• Non-spontaneous reactions have positive ∆Gθ and negative Eθ. 
• Reactions at equilibrium have ∆Gθ and Eθ = 0 

Electrolytic cells 
• Electrolytic cells use electrical energy to drive non-spontaneous chemical change. 
• The anode is the electrode where oxidation of anions occurs. It has a positive charge in an electrolytic cell. 
• The cathode is the electrode where reduction of cations occurs. It has a negative charge in an electrolytic cell. 
• The electrolyte is a molten salt or aqueous solution that undergoes chemical change. 
• In an electrolytic cell, current is supplied through a power source, and enters and leaves the electrolyte at the 

electrodes. It is carried through the electrolyte by mobile ions. 
• Neutral products are discharged from each electrode. 
• In aqueous solution water can be oxidized to oxygen at the anode and reduced to hydrogen at the cathode. 
• The products of electrolysis in aqueous solution depend on: 

i the Eθ values 
ii the concentration of electrolyte 
iii the nature of the electrode. 

• The amount of product in electrolysis depends on: 
i the ion charge 
ii the current 
iii the time. 

• charge (C) = current (A) × time (s) 
• The equation for the discharge of an ion shows the moles of electrons required. 

e.g. 2Cl– → Cl2 + 2e– ∴ 1 mole Cl2 discharged requires 2 moles of electrons. 
• Electroplating involves the electrolytic coating of an object with a thin layer of metal. 

Get it straight 
• In voltaic cells the anode is negative and the cathode is positive. 
• In electrolytic cells the anode is positive and the cathode is negative. 
• In all cells, oxidation occurs at the anode and reduction occurs at the cathode. 
• In all cells, electrons flow from the anode to the cathode. 



   
© Pearson Education Ltd 2014. For more information about the Pearson Baccalaureate series please visit 

www.pearsonbacconline.com 

Chapter 10: Organic chemistry – fast facts 
10.1 Fundamentals of organic chemistry 

Organic chemistry focuses on the chemistry of compounds containing carbon. 

• A homologous series is a series of compounds with the same general formula, where each member differs 
from the successive member by –CH2–. Members of the same homologous series show a trend in their 
physical properties and have similar chemical properties. 

• Different formulas are used to describe an organic compound: 
• empirical formula is the simplest ratio of atoms present in a molecule 
• molecular formula is the actual number of atoms present in a molecule 
• condensed structural formula gives the minimum information to describe the molecule non-

ambiguously 
• full structural formula shows all the bonds in a molecule 
• stereochemical formula shows the 3-dimensional arrangement of the atoms. 

(Note: skeletal formula is not a structural formula as it does not include all the hydrogen atoms.) 
• Saturated compounds contain single bonds only, and unsaturated compounds contain double or triple bonds. 
• IUPAC nomenclature is used to describe organic compounds. 
• Stem: named for the longest carbon chain where: 

C1 = meth-, C2 = eth-, C3 = prop-, C4 = but-, C5 = pent-, C6 = hex-, C7 = hept-, C8 = oct- 
• Suffix used for the functional group ending: 

-ene, -anol, -anal, -anone, -anoic acid, -anoate, -anamide, -anamine, -anenitrile, -benzene 
• Prefix used for substituent groups, using the smallest number to denote the main-chain C atom. 

methyl-, ethyl-, propyl-, fluoro-, chloro-, bromo-, iodo-, amino- 
• The functional group is the reactive part of a molecule. It defines the class of compound 

e.g. the hydroxyl group defines the class, the alcohols. 
• Structural isomers are molecules with the same molecular formula but different structural formulas. They 

contain atoms attached in a different order, and have distinct physical and chemical properties. Structural 
isomers can be straight/branched chains or differ in the position or nature of the functional group. 

• Primary, secondary, and tertiary carbon atoms are attached to a functional group, and differ in the number of 
hydrogen atoms to which they are also attached. Primary, secondary, and tertiary compounds e.g. alcohols 
and halogenoalkanes, show some different chemical properties. 

• Arenes contain the benzene ring. They are known as aromatic compounds. Organic compounds without the 
benzene ring are known as aliphatic compounds. 

• Benzene has distinct properties due to its delocalized pi electrons, which give it an extra stability. It is a 
planar, non-polar molecule, which does not readily undergo addition reactions despite being highly 
unsaturated. 

• The volatility of organic compounds depends on: 
i the size of the molecule/length of the hydrocarbon chain and  
ii the functional group. 

• The larger members of a homologous series are less volatile due to stronger London (dispersion) forces. 
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• More polar functional groups decrease the volatility of the compound. 

10.2 Functional group chemistry 

Structure, bonding and chemical reactions involving functional group  
interconversions are key strands in organic chemistry. 

• Hydrocarbons contain carbon and hydrogen only. Alkanes, alkenes, alkynes, and benzene are hydrocarbons. 
• Hydrocarbons undergo combustion and release significant energy. These reactions have high activation 

energy. 
• In excess O2, hydrocarbons burn to produce CO2 and H2O. In limited O2, they undergo incomplete combustion 

and produce CO or C. 
• The products of burning hydrocarbons have harmful effects on the environment and health. 
• Alkanes are saturated hydrocarbons. They have low reactivity as the C–C and C–H bonds are strong. 
• Alkanes undergo substitution reactions with halogens in UV light. The halogen undergoes photochemical 

homolytic fission to produce free radicals in the initiation step. The radicals substitute for H in the alkanes in 
propagation reactions that also produce free radicals. The reaction produces a mixture of substituted 
products. Termination steps involve two free radicals joining together. 

• Alkenes are unsaturated hydrocarbons containing a carbon–carbon double bond. The double bond is the site 
of reactivity as the pi bond breaks relatively easily, and so alkenes are more reactive than alkanes. 

• Alkenes undergo addition reactions, by breaking their double bond.  
• Addition reactions of alkenes include: 

• addition of H2 (hydrogenation) ⇒ alkanes 
• addition of halogens ⇒ dihalogenoalkane 
• addition of hydrogen halide (hydrohalogenation) ⇒ halogenoalkane 
• addition of H2O (hydration) ⇒ alcohol 

• Alkenes decolorize bromine water in the dark or light, and this colour change can be used to distinguish 
between alkanes and alkenes. 

• Alkenes undergo addition reactions to form addition polymers by breaking their double bonds. The repeat 
unit shows the structure of the monomer with open bonds on each side. 
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• Alcohols are fuels and, like hydrocarbons, yield products that depend on the amount of oxygen available. 
• Alcohols differ in their ability to be oxidized. Oxidizing agents include acidified potassium dichromate(VI) or 

potassium manganite(VII) and the reaction is heated. 
• Primary alcohols are oxidized first to aldehyde, and with prolonged oxidation to carboxylic acid. The 

aldehyde product can be separated by distillation as it has the lowest boiling point in the mixture. For 
prolonged oxidation to carboxylic acid, reflux is used. The oxidizing agent changes colour as it is 
reduced. 

• Secondary alcohols are oxidized to the ketone. The oxidizing agent changes colour as it is reduced. 
• Tertiary alcohols are not oxidized under these conditions. The oxidizing agent does not change colour. 

• Alcohols react with carboxylic acids to produce an ester and water. Concentrated sulfuric acid is used as a 
catalyst in the reaction. It is a condensation/esterification reaction. 
acid + alcohol → ester + water 
RCOOH + R’OH → RCOOR’ + H2O 

• Halogenoalkanes contain the polar bond C–halogen, and so are more reactive than alkanes. 
• Halogenoalkanes are susceptible to attack by nucleophiles at the electron-deficient carbon of the C–halogen 

bond. Nucleophiles are species that possess a lone pair of electrons, and can also possess a negative charge. 
• Halogenoalkanes undergo substitution reactions where the halogen is replaced by a nucleophile. 
• Halogenoalkanes react with NaOH(aq) to form an alcohol. 

e.g. RCl + NaOH → ROH + NaCl 
• Benzene does not readily undergo addition reactions, but instead undergoes substitution reactions that 

preserve the stable ring structure. These reactions are carried out by electrophiles, electron-deficient species 
that are attracted to the electron-dense benzene ring. They are known as electrophilic substitution reactions. 

20.1 Types of organic reactions 

Key organic reaction types include nucleophilic substitution, electrophilic addition, electrophilic substitution, and 
redox reactions. Reaction mechanisms vary and help in understanding the different types of reaction taking place. 

Nucleophilic substitution reactions 
• Between halogenoalkanes and NaOH. 
• SN1 mechanism = substitution reaction, nucleophilic, unimolecular. Proceeds via a carbocation intermediate 

formed by heterolytic fission of the C–halogen bond. Favoured by tertiary halogenoalkanes due to stability of 
the tertiary carbocation. Carried out in protic polar solvents. 

• SN2 mechanism = substitution reaction, nucleophilic, bimolecular. Proceeds in one concerted step via a 
transition state. The reaction is stereospecific. Carried out in aprotic, polar solvents. 

• OH– is a stronger nucleophile than H2O as it has a negative charge, in addition to lone pairs. 
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Electrophilic addition reactions 
• Alkene + Br2 / interhalogens / hydrogen halides 
• The pi bond in alkenes is an electron-dense area, to which electrophiles are attracted. Electrophiles are 

electron-deficient species, generated by heterolytic fission, e.g. Br+ from Br2. 
• The reaction involves breaking the pi bond of the double bond, creating two new bonding positions for the 

addition product. 
• The major product of the reaction of addition of unsymmetrical reagents to unsymmetrical alkenes can be 

predicted from Markovnikov’s rule. This prediction is based on the favoured mechanism proceeding via the 
more stable carbocation. 
tertiary carbocation > secondary carbocation > primary carbocation in stability 

Electrophilic substitution reactions 
• Benzene + HNO3/H2SO4 
• The delocalized ring of pi electrons in benzene is an electron-dense area, to which electrophiles are attracted. 
• Substitution reactions in benzene substitute a hydrogen atom of the ring for the electrophile, which preserves 

the stability of the benzene ring structure. 
• Nitration of benzene uses a nitrating mixture of the concentrated acids HNO3 and H2SO4. This generates the 

electrophile NO2
+ that substitutes in benzene. 

Reduction reactions  
• These are often defined in terms of gain of H/loss of O in organic chemistry. 
• Reducing agents for carbonyl compounds are NaBH4 or LiAlH4, which both produce H–: 

• carboxylic acid is reduced to aldehyde 
• aldehyde is reduced to primary alcohol 
• ketone is reduced to secondary alcohol 

• Reducing agents for nitrobenzene are Sn/conc. HCl. Nitrobenzene is reduced to phenylammonium ions, and 
then to phenylamine. 
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20.2 Synthetic routes 

Organic synthesis is the systematic preparation of a compound from a widely available starting material or the 
synthesis of a compound via a synthetic route that often can involve a series of different steps. 

• Organic chemistry often involves converting an available starting material into a required product in a multi-
step process. 

• Retro-synthesis involves working backwards from a desired product, and deducing the precursor molecules 
that can react to form the target molecule. 

• Functional group chemistry determines reaction conversions in synthetic routes. 
 

 

20.3 Stereoisomerism 

Stereoisomerism involves isomers which have different arrangements of atoms in space but do not differ in 
connectivity or bond multiplicity (i.e. whether single, double, or triple) between the isomers themselves. 

• Stereoisomers differ in the spatial/three-dimensional arrangement of the atoms in a molecule. 
• Configurational isomerism refers to stereoisomers that cannot be interconverted without breaking sigma 

bonds and so have a permanent difference in their geometry. 
• cis-trans isomers and E/Z isomers occur where there is a restriction on rotation around substituted groups. 

This occurs in (i) cyclic and (ii) double-bonded molecules, as here there is no free rotation. 
• Where there are only two types of substituents the isomers are called cis and trans – cis has the same groups 

on the same side, and trans has them on opposite sides of the reference plane. 
• Where there are more than two different substituents, the E/Z nomenclature must be used, which has 

broader application. Using priority rules, each group attached to each C atom of the ring or double bond is 
assigned a priority based on atomic number. The E isomer has the two groups of highest priority on the same 
side of the double bond or ring, and the Z group has them on the opposite sides. 

• Optical isomers occur when a molecule contains a chiral/asymmetric carbon atom. This is attached to four 
different groups, and gives rise to enantiomers that are non-superimposable mirror images of each other. 



   
© Pearson Education Ltd 2014. For more information about the Pearson Baccalaureate series please visit 

www.pearsonbacconline.com 

• Optical isomers differ in the direction in which they rotate plane-polarized light. This can be measured using a 
polarimeter. 

• A racemic mixture contains equal amounts of the two enantiomers and is optically inactive. 
• Diastereoisomers arise when a molecule has more than one chiral centre, and has different configurations in 

some but not all of these positions. Diastereoisomers are not mirror images of each other. 
• Enantiomers differ from each other in their direction of rotation of plane-polarized light, and in their 

reactivity with other chiral molecules. This is important in living cells, as all biochemical reactions are 
stereospecific. 

Get it straight 
• Free radicals have an unpaired electron but do not carry a charge; ions carry a charge. 
• Homolytic fission generates free radicals; heterolytic fission generates ions. 
• Combustion refers to complete oxidation of the molecule and involves destruction of the carbon chain. 

Oxidation of an organic compound refers to a chemical change at a functional group, which leaves the carbon 
structure of the molecule intact. 
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Chapter 11: Measurement and data processing 
and analysis – fast facts 
 
11.1 Uncertainty and error in measurement and results 

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating 
experimental results. 

• Qualitative data includes all non-numerical information obtained from observations, not from measurement. 
• Quantitative data are obtained from measurements and are always associated with random 

errors/uncertainties determined by the apparatus and by human limitations such as reaction times. 
• Random errors are caused by: 

• the readability of the measuring instrument 
• the effects of changes in the surroundings, such as temperature variations and air currents 
• insufficient data 
• the observer misinterpreting the reading. 

• Random errors make a measurement less precise, but not in any particular direction. They are expressed as 
an uncertainty range, such as 25.05 ± 0.05 °C. 

• The uncertainty of an analogue scale is ± (half the smallest division). 
• The uncertainty of a digital scale is ± (the smallest scale division). 
• Systematic errors occur when there is an error in the experimental procedure. Measuring the volume of 

water from the top of the meniscus rather than the bottom, or overshooting the volume of a liquid delivered 
in a titration will lead to readings which are too high. Heat losses in an exothermic reaction will lead to 
smaller observed temperatures changes. 

• Experiments are repeatable if the same person duplicates the experiment with the same results. 
• Experiments are reproducible if several experimentalists duplicate the results. 
• The precision or reliability of an experiment is a measure of the random error. If the precision is high then the 

random error is small. 
• The accuracy of a result is a measure of how close the result is to some accepted or literature value. If an 

experiment is accurate then the systematic error is very small. 
• Random uncertainties can be 

reduced by repeating readings; 
systematic errors cannot be 
reduced by repeating 
measurements. 

• Precise measurements have small 
random errors and are reproducible 
in repeated trials. Accurate 
measurements have small 
systematic errors and give a result 
close to the accepted value. 
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• The number of significant figures in any answer should reflect the number of significant figures in the given 
data. 

• When data are multiplied or divided the answer should be quoted to the same number of significant figures 
as the least precise. 

• When data are added or subtracted the answer should be quoted to the same number of decimal places as 
the least precise value. 

• When adding or subtracting measurements, the total absolute uncertainty is the sum of the absolute 
uncertainties. 

• When multiplying or dividing measurements, the total percentage uncertainty is the sum of the individual 
percentage uncertainties. The absolute uncertainty can then be calculated from the percentage uncertainty. 

• To find the absolute uncertainty in a calculated value for ab or a/b: 
  1 Find the percentage uncertainty in a and b. 
  2 Add the percentage uncertainties of a and b to find the percentage uncertainty in the calculated value. 
  3 Convert this percentage uncertainty to an absolute value. 

If one uncertainty is much larger than others, the approximate uncertainty in the calculated result can be 
taken as due to that quantity alone. 

• The experimental error in a result is the difference between the recorded value and the generally accepted or 
literature value. 

• Percentage uncertainty = (absolute uncertainty/measured value) × 100% 
• Percentage error = (accepted value – experimental value)/accepted value) × 100% 

11.2 Graphical techniques 

Graphs are a visual representation of trends in data. 

• Graphical techniques are an effective means of communicating the effect of an independent variable on a 
dependent variable, and can lead to determination of physical quantities.  

• The independent variable is the cause and is plotted on the horizontal axis. The dependent variable is the 
effect and is plotted on the vertical axis. 

• Sketched graphs have labelled but unscaled axes, and are used to show qualitative trends, such as variables 
that are proportional or inversely proportional. 

• Drawn graphs have labelled and scaled axes, and are used in quantitative measurements. 
• When drawing graphs: 

• give the graph a title and label the axis with both quantities and units. 
• use the available space as effectively as possible and use sensible scales – there should be no uneven 

jumps. 
• plot all the points correctly. 
• identify any points which do not agree with the general trend. 
• think carefully about the inclusion of the origin. The point (0, 0) can be the most accurate data point or 

it can be irrelevant. 
• You should be able to give a qualitative physical interpretation of a particular graph. See the next page for 

examples. 
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• The variables are proportional. • The variables are inversely proportional. 

  

 
• A best-fit straight line does not have to go through all 

the points but should show the overall trend. 
• The equation for a straight line is: 

y = mx + c 
x is the independent variable 
y is the dependent variable 
m is the gradient 
 

m = Δy
Δx

 

m has units 
c is the intercept on the vertical axis 

 
 
 
 
 
• A systematic error produces a displaced line. 
• Random uncertainties lead to points on both sides of the 

perfect line. 
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• The gradient of a curve is given by the gradient of 
the tangent at that point. 

 
 
 
 
• The process of assuming that the trend line applies 

between two points is called interpolation. 
• A line is extrapolated when it is extended beyond the range of measurement. 

11.3 Spectroscopic identification of organic compounds 

Analytical techniques can be used to determine the structure of a compound, analyse the  
composition of a substance, or determine the purity of a compound. Spectroscopic techniques  

are used in the structural identification of organic and inorganic compounds. 

• The degree of unsaturation (or index of hydrogen deficiency) provides a measure as to the degree of 
unsaturation of an organic molecule. It relates to how many molecules of hydrogen would in theory be 
needed to convert an unsaturated molecule to a saturated molecule. 

• Mass spectrometry (MS), proton nuclear magnetic resonance spectroscopy (1H NMR) and infrared 
spectroscopy (IR) are techniques that can be used to help identify and to determine the structure of 
compounds. 

• The data booklet contains characteristic ranges for IR absorptions (section 26), 1H NMR data (section 27), 
specific MS fragments (section 28) and the formula to determine IHD. 

Mass spectrometry 
• Molecules are hit by fast-moving electrons, forming a positive ion. The ion can fragment. The largest fragment 

is the parent ion. 
• A fragmentation pattern can provide evidence for the structure of the compound. 

Infrared spectroscopy 
• Energy needed to excite molecules to make them vibrate more occurs in the infrared region of the spectrum. 
• IR radiation can cause a bond to stretch or bend. Stretching a bond is requires more energy than bending a 

bond and generally occurs at higher wavenumbers.  
• Absorption of particular wavenumbers of IR radiation correspond to particular bonds. Bonds with atoms of 

small mass absorb at higher wavenumbers than atoms with larger mass. Double bonds occur at higher 
wavenumbers than single bonds. Characteristic absorption bands can be found in section 26 of the IB data 
booklet.  

• Hydrogen bonding broadens the absorptions. 
• The intensity of the absorption depends on the polarity of the bond. 
• In a polyatomic molecule such as carbon dioxide it is more correct to consider the molecule stretching and 

bending as a whole, rather than considering the individual bonds. 
• In carbon dioxide, for example, there are four modes of vibration.  The symmetric stretch is IR inactive as it 

produces no change in dipole moment.  
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• Molecules with several bonds can vibrate in many different ways and with many different frequencies. The 

complex pattern can be used as a fingerprint to be matched against the recorded spectra of known 
compounds in a database. A comparison of the spectrum of a sample with that of a pure compound can also 
be used as a test of purity. 

Nuclear magnetic resonance spectroscopy 
• Studies the alignment of protons (or 13C, 19F, and 31P atoms) in magnetic fields. 
• The position of the NMR signal relative to the standard tetramethylsilane is called the chemical shift of the 

proton. Hydrogen nuclei in particular environments have characteristic chemical shifts. 
• Tetramethylsilane has 12 hydrogen atoms bonded in the same atypical environmental close to a silicon atom. 

It gives one strong signal away from signals produced in most organic compounds. 
• The integrated trace indicates the relative number of hydrogen atoms in the different environments. 
 

21.1 Spectroscopic identification of organic compounds 
Although spectroscopic characterization techniques form the backbone of structural identification of  

compounds, typically no one technique results in a full structural identification of a molecule. 

Nuclear magnetic resonance spectroscopy 
• Under high resolution individual peaks may split into further peaks due to spin–spin coupling. If a proton has 

n protons as nearest neighbours its NMR peak is split into (n + 1) peaks. 
• The splitting patterns can be deduced from Pascal’s triangle and are summarized below: 
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• When analysing high-resolution NMR spectra, the following additional points should be noted: 
• Protons bonded to the same atom do not interact with one another as they are equivalent and behave 

as a group. 
• Protons on non-adjacent carbon atoms do not generally interact with one another. 
• The O—H single peak in ethanol does not split unless the sample is pure, as rapid exchange of the 

protons between ethanol molecules averages out the different possible spins. 

X-ray diffraction 
• Used to produce an electron density map of a crystalline solid. This can be related to the atoms which make 

up the molecule. 
• The identity of the atoms can be determined from the pattern in electron densities which are related to an 

element’s electron configuration.  Hydrogen atoms are not generally detected as they have only one electron.  
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Chapter 15: Medicinal chemistry – fast facts 
D.1 Pharmaceutical products and drug action 

Medicines and drugs have a variety of different effects on the functioning of the body. 

• Drugs can be administered in different ways : orally, inhalation, absorption through skin, suppositories, eye 
or ear drops, or by injection. 

• Bioavailability refers to the fraction of an administered drug that reaches its target in the body. Intravenous 
administration gives a bioavailability of 100%. Drugs taken orally have a lower bioavailability due to the first-
pass effect. Bioavailability is influenced by the solubility of the drug in water and in lipid, and by functional 
groups in the drug which influence polarity and so solubility. 

• Side-effects refer to unintended physiological effects of drugs in the body. They can be beneficial, harmless, 
or adverse – so must be monitored. 

• Tolerance occurs when repeated doses of a drug result in smaller physiological effects. 
• Addiction occurs when the dependency on a drug leads to withdrawal symptoms if it is withheld. 
• Dosage refers to the amount of a drug taken over an interval of time. 
• The therapeutic window is the range of concentrations of a drug in the blood between its therapeutic and 

toxic levels. 
• The therapeutic window is quantified as the therapeutic index. This is the ratio of the lethal dose (in animals, 

LD50) or toxic dose (in humans, TD50), divided by the minimum effective dose (ED50). 
• Drugs with a low therapeutic index have a low margin of safety, so dosage here is crucial. Animal and human 

tests of drug dosages should be kept to a minimum. 
• Understanding drug–receptor interactions has contributed largely to rational drug design. Drug development 

depends on identifying the need and identifying a suitable target in the body. The process is slow and costly, 
though optimized by combinatorial chemistry and the synthesis of analogues. 

• Drug trials for potential drugs involve animals and humans in three phases. Each phase involves larger 
numbers of patients. Phase III uses double-blind trials to test the effectiveness of the drug against a placebo. 

D.2 Aspirin and penicillin 

Natural products with useful medicinal properties can be chemically altered to  
produce more potent and safe medicines. 

• Aspirin is a mild analgesic that acts to block the pain stimulus at source. It also acts as an anticoagulant in the 
blood. It has a synergistic effect with alcohol, which can cause stomach bleeding. 

• Aspirin can be synthesized from salicylic acid in an esterification reaction. The reaction uses ethanoyl 
chloride and concentrated sulfuric acid or phosphoric acid. 

• Purification of aspirin involves recrystallization, which causes it to crystallize from a hot saturated solution of 
ethanol during cooling, while the impurities stay in the solution. 

• The aspirin product can be characterized by melting point determination and by IR spectroscopy. Aspirin 
gives distinct peaks due to its –COOH and ester groups. 

• Modification of aspirin to soluble form involves reacting it with an alkali to form an ionic salt. 
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• Penicillin is an antibiotic that was first extracted from the mould Penicillium and characterized using X-ray 
crystallography. 

• Penicillin contains a beta-lactam ring in which the carbon atoms are under bond strain. Breakage of these 
bonds allows the antibiotic to inhibit the bacterial enzyme transpeptidase that is essential in the synthesis of 
bacterial cell walls. This kills the bacteria. 

• The side-chains in penicillin have been modified to allow the drug to be administered orally, as this 
modification prevents its breakdown in the stomach. 

• Many bacteria have become resistant by developing beta-lactamase enzymes which break the beta-lactam 
ring. Different forms of penicillin, methicillin and oxacillin, have modified side-chains which prevent the 
binding of the beta-lactamase enzyme. 

• Response to antibiotic resistance must include monitoring of over-prescription by medical practitioners and 
greater patient compliance in completing a dose. 

D.3 Opiates 

Potent medical drugs prepared by chemical modification of natural products  
can be addictive and become substances of abuse. 

• Opiates are strong analgesics, derived from poppy seeds, which act to reduce the perception of pain in the 
brain. They bind to specific opioid receptors in the brain. 

• The blood–brain barrier is largely lipid and so is crossed more easily by non-polar drug molecules. 
• The opiates cause side-effects such as constipation, which are not serious, but they also have narcotic effects 

and are highly addictive. Addiction to diamorphine (heroin) is a very serious condition and is often linked to 
other social problems due to the dependence. 

• Morphine is converted into codeine by methylation and into diamorphine by esterification. Diamorphine is 
able to cross the blood–brain barrier more quickly and so is the fastest acting opioid. In terms of their 
analgesic properties, side-effects and narcotic effects: 
codeine < morphine < diamorphine 

D.4 pH regulation of the stomach 

Excess stomach acid is a common problem that can be alleviated by compounds that  
increase the stomach pH by neutralizing or reducing its secretion. 

• HCl is produced by parietal cells in the gastric glands of the stomach. 
• Excess acid from the stomach causes dyspepsia and can lead to ulceration. 
• There are two types of drugs that prevent the production of excess acid. 

i Drugs that block the histamine-H2 interaction in the gastric glands: these drugs compete with histamine 
for binding at the receptors. They include ranitidine. 

ii Drugs that inhibit the proton pump that parietal cells use to pump H+ ions into the stomach lumen. 
They include omeprazole and esomeprazole. 

• Antacids are weak bases that act to neutralize excess stomach acid. They include calcium, magnesium, and 
aluminium hydroxides and sodium carbonate and hydrogencarbonate. The stoichiometry of these reactions 
determines the amount of HCl that can be neutralized by each antacid. 
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• Cells contain buffer solutions that keep the pH relatively constant on the addition of small amounts of acid 
or base. 

• The pH of a buffer solution can be determined from the pKa or pKb of the parent acid/base and by the 
relative concentrations of acid/base and salt. 

• The Henderson–Hasselbalch equation is: pH = pKa + log
[salt]
[base]

 

D.5 Antiviral medications 

Antiviral medications have recently been developed for some viral infections  
while others are still being researched. 

• Viruses lack a cell structure and so are more difficult to treat in the body than bacteria. Viruses consist only 
of genetic material (DNA or RNA) and protein. They synthesize other components inside the host cell. 

• Antiviral drugs target specific viral infections. They work by causing changes to the cell membrane which 
prevent the entry of viruses, altering the cell’s DNA so it cannot be used by the virus, or blocking enzyme 
activity to prevent viral multiplication. 

• Oseltamivir and zanamivir are antivirals for flu that inhibit the enzyme neuraminidase, which allows new 
viral particles to escape from the host cell and cause infection. They must be taken immediately as 
symptoms appear or the viral infection will already have spread too far. 

• Oseltamivir and zanamivir have similar structures, and act as competitive inhibitors with neuraminidase as 
their structures are similar to sialic acid, its normal substrate. 

• HIV infection, which can lead to AIDS, is particularly difficult to treat. The virus destroys cells in the immune 
system, mutates very rapidly, and can often lie dormant within cells for years. Anti-retrovirals target 
interactions between the virus and host cells, the enzyme reverse transcriptase, and the release of new viral 
particles. 

D.7 Taxol: a chiral auxiliary case study 

Chiral auxiliaries allow the production of individual enantiomers of chiral molecules. 

• Taxol is derived from the bark of Pacific yew trees and is used to treat cancer. 
• Taxol acts as a chemotherapeutic agent by binding to tubulin in microtubules, which prevents spindle 

formation during cell division. This prevents growth of the tumour. 
• Taxol is a chiral molecule with 11 chiral carbon centres. Many diastereoisomers are therefore possible. 
• Taxol is now produced in semi-synthetic synthesis starting with extracts from yew needles. The reactions 

involve the use of a chiral auxiliary. This binds to the reactant in such a way that it determines the 
stereochemistry of the next step. 

• Enantiomer selectivity is common in the drug industry as different enantiomers often have different effects 
in the body. 

• A polarimeter can be used to identify enantiomers. 
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D.8 Nuclear medicine 
Nuclear radiation, whilst dangerous owing to its ability to damage cells and cause mutations,  

can also be used to both diagnose and cure diseases. 

• Medical treatment uses radioisotopes that are alpha, beta, gamma, proton, neutron, or positron emitters. 
• Radioactive emissions have ionizing effects in cells. 
• The half-life of a radioactive isotope is the time taken for an initial amount of substance to fall to one half of 

its initial value. Radioactive decay reactions have a constant half-life; they are first-order reactions. The 
shorter the half-life the greater the activity of the radionuclide. 

• Diagnostic approaches use MRI, an application of NMR, and PET scanners. 
• The tracers used in diagnosis include technetium-99m, which is a gamma emitter. It has a convenient half-

life (6 hours), and binds well to a range of biologically active substances. 
• Radionuclide therapy can be internal or external. External therapy generally uses cobalt-60. 
• Internal radionuclide therapy includes target alpha therapy using lead-212, and boron neutron capture 

therapy. 
• Side-effects of radiotherapy include nausea, sterility, skin damage, and fatigue. 

D.9 Drug detection and analysis 

A variety of analytical techniques is used for detection, identification,  
isolation, and analysis of medicines and drugs. 

• Drug preparation usually involves techniques of separation and purification, exploiting differences in 
solubility and volatility. 

• Solvent extraction separates components of a mixture on the basis of their partition between different 
solvents. 

• Recrystallization involves crystallizing a product out from a hot solvent, in which impurities are more soluble. 
• Fractional distillation separates mixtures into fractions on the basis of their different boiling points. The 

vapour above a mixture of liquids is always enriched in the more volatile component. Successive cycles of 
boiling and condensation cause greater separation of the components. 

• Raoult’s law states that the vapour pressure of a volatile substance in a solution is equal to the vapour 
pressure of the pure substance multiplied by its mole fraction. 

• Drug detection relies on accurate analytical instrumentation. 
• Steroid detection uses gas chromatography and mass spectrometry. 
• Alcohol detection uses breathalysers based on redox reactions or fuel cells. 

• Characterization of drugs uses mass spectrometry, IR spectroscopy, and NMR spectroscopy. 

D.6 Environmental impact of some medications 

The synthesis, isolation, and administration of medications can have an effect on the environment. 

• Solvent waste is a major emission of the pharmaceutical industry. Environmental issues include by-products 
of incineration and the direct consequences on soil and water of dumping toxic compounds. 
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• Medical nuclear waste includes low-level waste and high-level waste. Some radioisotopes from medical 
diagnosis generate high-level waste, and secure means are needed to preventing this from entering the soil 
and water supply. 

• Antibiotic resistance is an increasing problem that demands global measures for the controlled use of 
antibiotics. 

• The antiviral drug tamiflu can be prepared using Green Chemistry principles, including the isolation of the 
precursor from fermentation reactions. 

• Green Chemistry principles are helping to reduce waste and reduce the environmental impact of many 
aspects of the pharmaceutical industry. 
 


